Skip to main content
Log in

Topological characteristics of extremals of variational problems

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature Cited

  1. P. S. Aleksandrov,Combinatorial Topology [in Russian], Gostekhizdat, Moscow (1947).

    Google Scholar 

  2. V. I. Arnold, “The index of a singular point of a vector field, the Petrovskii-Oleinik inequalities, and Hodge's mixed structures,”Funkts. Anal. Ego Pril.,12, No. 1, 1–14 (1978).

    MATH  Google Scholar 

  3. N. A. Bobylev, “On the necessary condition for an extremum of functionals of variational calculus,”Avtomat. Telemekh., No. 2, 186–187 (1976).

    MATH  MathSciNet  Google Scholar 

  4. N. A. Bobylev, “On the approximation method of introduction of rotation for certain classes of continuous vector fields,” In:Qualitative and Approximate Methods of Investigating Operator Equations [in Russian], Yaroslayl' State Univ. Press, Yaroslavl' (1977), pp. 25–31.

    Google Scholar 

  5. N. A. Bobylev, “Regular and critical points of continuous functions,” In:Qualitative and Approximate Methods of Investigating Operator Equations [in Russian], yaroslavl' State Univ. Press, Yaroslavl' (1980), pp. 30–42.

    Google Scholar 

  6. N. A. Bobylev, “On a certain technique of investigating gradient systems and stability,”Avtomat. Telemekh., No. 8, 33–35 (1980).

    MATH  MathSciNet  Google Scholar 

  7. N. A. Bobylev, “On the deformation method of investigation of the quality functions of systems with an infinite number of degrees of freedom,”Avtomat. Telemekh., No. 7, 11–18 (1981).

    MATH  MathSciNet  Google Scholar 

  8. N. A. Bobylev, “On the deformation of functionals having a unique critical point,”Mat. Zametki,34, No. 3, 387–398 (1983).

    MATH  MathSciNet  Google Scholar 

  9. N. A. Bobylev, “On the topological characteristics of optimal equations,”Avtomat. Telemekh., No. 7, 64–72 (1985).

    MATH  MathSciNet  Google Scholar 

  10. N. A. Bobylev, “The solvability of boundary value problems and the criteria of a minimum of integral functionals,”Ukr. Mat. Zh.,37, No. 4, 418–424 (1985).

    MathSciNet  Google Scholar 

  11. N. A. Bobylev, “The topological index of extremals in optimization problems,” In:Mathematical Theory of Systems [in Russian], Nauka, Moscow (1986), pp. 25–44.

    Google Scholar 

  12. N. A. Bobylev, “On the topological index of extremals in multidimensional variational problems,”Funkts. Anal. Ego Pril.,20, No. 2, 8–13 (1986).

    MATH  MathSciNet  Google Scholar 

  13. N. A. Bobylev, “On a certain characteristic of extremals in variational problems,”Dokl. Akad. Nauk SSSR,292, No. 3, 521–524 (1987).

    MathSciNet  Google Scholar 

  14. N. A. Bobylev and Yu. M. Burman, “The Morse lemmas for functionals in variational calculus,”Funkts. Anal. Ego Pril.,25, No. 3, 1–11 (1991).

    MathSciNet  Google Scholar 

  15. N. A. Bobylev and Yu. M. Burman, “The Morse lemmas for integral functionals,”Dokl. Akad. Nauk SSSR,317, No. 2, 267–270 (1991).

    MathSciNet  Google Scholar 

  16. N. A. Bobylev, M. A. Krasnosel'skii, A. M. Krasnosel'skii, and A. V. Pokrovskii, “On some new ideas in nonlinear analysis,” In:Nelin. Gran. Zadachi, Kiev (1989), pp. 22–26.

  17. N. A. Bobylev and M. A. Krasnosel'skii, “The deformation of systems into asymptotically stable ones,”Avtomat. Telemekh., No. 7, 5–8 (1974).

    MathSciNet  Google Scholar 

  18. N. A. Bobylev and M. A. Krasnosel'skii, “Normal deformations in variational problems,”Dokl. Akad. Nauk SSSR,307, No. 4, 785–788 (1989).

    Google Scholar 

  19. N. A. Bobylev and M. A. Krasnosel'skii, “On the bifurcation of extremals in variational problems,”Dokl. Akad. Nauk SSSR,314, No. 2, 265–268 (1990).

    Google Scholar 

  20. V. G. Boltyanskii,Mathematical Methods of Optimal Control [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  21. Yu. G. Borisovich, “Estimates for the number of critical points,”Dokl. Akad. Nauk SSSR,101, No. 2, 205–207 (1955).

    MATH  MathSciNet  Google Scholar 

  22. Yu. G. Borisovich, “On the stability of critical values of even functionals,”Dokl. Akad. Nauk SSSR,104, 165–168 (1955).

    MATH  MathSciNet  Google Scholar 

  23. Yu. G. Borisovich, “On critical values of some functionals in Banach spaces,”Uspekhi Mat. Nauk,12, No. 1, 157–160 (1957).

    MATH  MathSciNet  Google Scholar 

  24. Yu. G. Borisovich, “On a certain theorem on critical points of functionals,”Mat. Sb.,42, No. 3, 353–360 (1957).

    MATH  MathSciNet  Google Scholar 

  25. Yu. G. Borisovich, “Stability of critical values of functionals,”Izv. Vuzov. Mat., No. 1, 24–34 (1960).

    MATH  Google Scholar 

  26. Yu. G. Borisovich, “On the relative motion of compact vector fields,”Trudy Seminara po Funkt. Anal. Issue 12, Voronezh State Univ. Press, Voronezh, 4–26 (1969).

    Google Scholar 

  27. Yu. G. Borisovich, B. D. Gel'man, E. M. Mukhamadiev, and V. V. Obukhovskii, “On the rotation of multivalued vector fields,”Dokl. Akad. Nauk SSSR,187, No. 5, 971–973 (1969).

    MathSciNet  Google Scholar 

  28. Yu. G. Borisovich, B. D. Gel'man, A. D. Myskiš, and V. V. Obukhovskii, “Multivalued mappings,” In:Mat. Analiz, Vol. 19, Itogi Nauki i Tekhniki, All-Union Institute for Scientific and Technical Information, (VINITI) Press, Moscow (1982), pp. 127–231.

    Google Scholar 

  29. Yu. G. Borisovich, V. G. Zvyagin, and Yu. I. Sapronov, “Nonlinear Fredholm mappings and the Leray-Schauder theory,”Uspekhi Mat. Nauk,32, No. 4, 3–54 (1977).

    Google Scholar 

  30. M. M. Vainberg,Variational Methods of Investigation of Nonlinear Operators [in Russian], Gostekhizdat, Moscow (1956).

    Google Scholar 

  31. M. M. Vainberg,The Variational Method and the Monotone Operators Method in the Theory of Nonlinear Equations [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  32. S. A. Vakhrameev, “The Palais-Smale theory for manifolds with angles. 1. The case of a finite codimension,”Uspekhi Mat. Nauk,45, No. 4, 141–142 (1990).

    MATH  MathSciNet  Google Scholar 

  33. S. A. Vakhrameev, “The Lusternik-Schnirelman theory for transversally convex subsets of Hilbert manifolds and its application in the optimal control theory,”Dokl. Akad. Nauk SSSR,319, No. 1, 18–21 (1991).

    MATH  MathSciNet  Google Scholar 

  34. S. A. Vakhrameev, “The Morse theory and the Lusternik-Schnirelman theory in the geometrical control theory,” In:Sovremennye Problemy Matematiki, Noveishie Dostizheniya, Vol. 39, Itogi Nauki i Tekhniki, All-Union Institute for Scientific and Technical Information, Vol. 39, (VINITI) Press, Akad. Nauk SSSR, Moscow (1991), pp. 41–117.

    Google Scholar 

  35. S. A. Vakhrameev and A. V. Sarychev, “Geometric control theory,” In:Algebra. Topol. Geometr., Vol. 23, Itogi Nauki i Tekhniki, All-Union Institute for Scientific and Technical Information, (VINITI) Press, Akad. Nauk SSSR, Moscow (1985), pp. 197–280.

    Google Scholar 

  36. L. P. Vlasov, “Approximative properties of sets in linear normed spaces,”Uspekhi Mat. Nauk,27, No. 6, 3–66 (1973).

    MathSciNet  Google Scholar 

  37. Yu. N. Voinov, “The boundedness of gradients of generalized solutions of boundary-value problems for quasilinear elliptic equations in the vicinity of the boundary,”Vestn. Leningr. Gos. Univ.,2, No. 7, 4–11 (1974).

    MathSciNet  Google Scholar 

  38. I. I. Voronovich, “Some estimates of the number of solutions for Karman equations related to the problem of stability of plates and hulls,” In:Problems of Hydrodynamics and Mechanics of Continuum [in Russian], Nauka, Moscow (1969), pp. 111–118.

    Google Scholar 

  39. V. Ginzburg and L. Landau, “Phenomenological theory of superconductivity,”Zh. Eksp. Teor. Fiz.,20, 1064 (1950).

    Google Scholar 

  40. I. V. Girsanov,Lectures in the Mathematical Theory of Extremal Problems [in Russian], Moscow State Univ. Press, Moscow (1970).

    Google Scholar 

  41. G. L. Grodzovskii, Yu. N. Ivanov, and V. V. Tokarev,The Mechanics of Space Flight. Optimization Problems [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  42. A. M. Dement'eva, V. M. Krasnosel'skii, and M. A. Krasnosel'skii, “Degenerate critical points of functions of many variables,” In:Proc. of the Seminar on Diff. Equat., Vol. 5 Kuibyshev State Univ. Press, Kuibyshev (1980), pp. 23–32.

    Google Scholar 

  43. V. F. Demyanov,Minimax: Directional Differentiation [in Russian], Leningr. Gos. Univ. Press, Leningrad (1974).

    Google Scholar 

  44. V. F. Demyanov,Nonsmooth Problems of Optimization and Control [in Russian], Leningr. Gos. Univ. Press, Leningrad (1982).

    Google Scholar 

  45. V. F. Demyanov and L. V. Vasil'ev,Nondifferentiable Optimization [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  46. A. V. Dmitruk, A. A. Milyutin, and N. P. Osmolovskii, “Lusternik's theorem and the extremum theory,”Uspekhi Mat. Nauk,35, No. 6, 11–46 (1980).

    MathSciNet  Google Scholar 

  47. A. Ya. Zaslavskii, “On the critical points of Lipschitz functions on smooth manifolds,”Sib. Mat. Zh.,22, No. 1, 87–93 (1981).

    MATH  MathSciNet  Google Scholar 

  48. A. D. Ioffe and V. M. Tikhomirov,The Theory of Extremal Problems [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  49. V. P. Kardashov, “The conditions for differentiability of a multudimensional functional in variational calculus,”Vestn. Mosk. Gos. Univ., Mat., Mekh., No. 1, 23–31 (1971).

    MATH  Google Scholar 

  50. P. I. Kachurovskii, “On monotone operators and convex functionals,”Uspekhi Mat. Nauk,15, No. 4, 213–215 (1960).

    Google Scholar 

  51. P. I. Kachurovskii, “Nonlinear monotone operators in Banach spaces,”Uspekhi Mat. Nauk,23, No. 2, 121–168 (1968).

    MATH  Google Scholar 

  52. V. S. Klimov, “On the rotation of potential vector fields,”Mat. Zametki,20, No. 2, 253–261 (1976).

    MATH  MathSciNet  Google Scholar 

  53. V. S. Klimov, “On functionals with an infinite number of critical values,”Mat. Sb.,100, No. 1, 101–115 (1976).

    MathSciNet  Google Scholar 

  54. V. S. Klimov, “On the number of solutions of boundary-value problems on the nonlinear theory of hulls,”Dokl. Akad. Nauk SSSR,247, No. 1, 57–60 (1980).

    MathSciNet  Google Scholar 

  55. V. S. Klimov, “Nontrivial solutions of equations with potential operators,”Sib. Mat. Zh.,21, No. 6, 28–45 (1980).

    MATH  MathSciNet  Google Scholar 

  56. V. S. Klimov, “Nontrivial solutions of the Ginzburg-Landau equations,”Teor. Mat. Fiz.,50, No. 3, 383–389 (1982).

    MathSciNet  Google Scholar 

  57. V. S. Klimov, “Eigenvectors on nonlinear potential operators,”Sib. Mat. Zh.,24, No. 1, 105–112 (1983).

    MathSciNet  Google Scholar 

  58. V. S. Klimov and N. V. Senchakova, “On the relative rotation of multivalued potential vector fields,”Mat. Sb.,112, No. 10, 1393–1407 (1991).

    Google Scholar 

  59. M. A. Krasnosel'skii, “Estimates for the number of critical points,”Uspekhi Mat. Nauk,7, 157–164 (1952).

    MATH  Google Scholar 

  60. M. A. Krasnosel'skii, “The stability of critical values of even functionals on a sphere,”Mat. Sb.,37, No. 2, 301–322 (1955).

    MATH  MathSciNet  Google Scholar 

  61. M. A. Krasnosel'skii,Topological Methods in the Theory of Nonlinear Integral Equations [in Russian], Gostekhizdat, Moscow (1956).

    Google Scholar 

  62. M. A. Krasnosel'skii,The Shift Operator along the Trajectories of Differential Equations [in Russian], Fizmatgiz, Moscow (1966).

    Google Scholar 

  63. M. A. Krasnosel'skii, N. A. Bobylev, and E. M. Mukhamadiev, “On a certain scheme of investigating degenerate extremals of functionals of the classical variational calculus,”Dokl. Akad. Nauk SSSR,240, No. 3, 530–533 (1978).

    MathSciNet  Google Scholar 

  64. M. A. Krasnosel'skii, N. A. Bobylev, and E. M. Mukhamadiev, “On the topological index of extremals of functionals in variational calculus,”Dokl. Akad. Nauk SSSR,21, No. 8, 8–11 (1978).

    MathSciNet  Google Scholar 

  65. M. A. Krasnosel'skii and P. P. Zabreiko,Geometric Methods of Nonlinear Analysis [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  66. M. A. Krasnosel'skii, E. M. Mukhamadiev, and A. V. Pokrovskii, “Bifurcation values of parameters in variational problems,”Dokl. Akad. Nauk SSSR,255, No. 2, 282–286 (1980).

    MathSciNet  Google Scholar 

  67. M. A. Krasnosel'skii, A. I. Perov, A. I. Povolotskii, and P. P. Zabreiko,Vector Fields in the Plane [in Russian], Fizmatgiz, Moscow (1963).

    Google Scholar 

  68. V. V. Kozlov, “The principle of least action and periodic solutions in classical mechanics problems,”Prikl. Mat. Mekh.,40, No. 3, 399–407 (1976).

    MATH  Google Scholar 

  69. V. V. Kozlov, “The calculus of variations in the large and the classical mechanics,”Uspekhi Mat. Nauk,40, No. 2, 33–60 (1985).

    MATH  MathSciNet  Google Scholar 

  70. A. I. Koshelev,The Regularity of Solutions of Elliptic Equations and Systems [in Russian], Nauka, Moscow (1986).

    Google Scholar 

  71. I. A. Kuzin, “On a certain variational method of finding critical points of a functional and its applications,”Dokl. Akad. Nauk SSSR,314, No. 1, 85–88 (1990).

    MATH  Google Scholar 

  72. M. A. Lavrent'ev and L. A. Lusternik,Fundamentals of Variational Calculus [in Russian], Dept. Sci.-Tech. Inst., Moscow (1935).

    Google Scholar 

  73. O. A. Ladyshenskaya,Mathematical Problems of the Dynamics of Viscous Incompressible Liquids [in Russian], Nauka, Moscow (1970).

    Google Scholar 

  74. O. A. Ladyzhenskaya and N. N. Ural'tseva,Linear and Quasilinear Equations of Elliptic Type [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  75. A. Langenbakh, “On the application of the variational principle to certain differential equations,”Dokl. Akad. Nauk SSSR,121, No. 2, 214–217 (1958).

    MathSciNet  Google Scholar 

  76. L. D. Landau,Collected Works, Vol. 2 [in Russian], Nauka, Moscow (1969).

    Google Scholar 

  77. J. Leray and Yu. Schauder, “Topology and functional equations,”Uspekhi Mat. Nauk,1, No. 3, 71–95 (1946).

    Google Scholar 

  78. E. M. Lifshits and L. P. Pitaevskii,Statistical Physics, Vol. 2 [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  79. L. A. Lusternik, “Topology and the calculus of variations,”Uspekhi Mat. Nauk,1, No. 1, 30–56 (1946).

    Google Scholar 

  80. L. A. Lusternik, “The topology of functional spaces and the calculus of variations,”Tr. Mat. Inst. Akad. Nauk SSSR,19 (1947).

  81. L. A. Lusternik,Convex Figures and Polyhedrons [in Russian], Gostekhizdat, Moscow (1956).

    Google Scholar 

  82. L. A. Lusternik and V. I. Sobolev,Elements of Functional Analysis [in Russian], Nauka, Moscow (1965).

    Google Scholar 

  83. L. A. Lusternik and A. I. Fet, “Variational problems on closed manifolds,”Dokl. Akad. Nauk SSSR,81, No. 1, 17–18 (1951).

    Google Scholar 

  84. L. A. Lusternik and L. G. Schnirelman, “Topological methods in variational problems,” In:Proc. Research Inst. Math. Mech., GITL, Mosk. Gos. Univ. (1930).

  85. L. A. Lusternik and L. G. Schnirelman, “Topological methods in variational problems and their applications to the differential geometry of surfaces,”Uspekhi Mat. Nauk,2, No. 1, 166–217 (1947).

    Google Scholar 

  86. Yu. I. Neimark,The Method of Point Mappings in the Theory of Nonlinear Oscillations [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  87. S. M. Nikol'skii,The Approximation of Functions of Several Variables and the Embedding Theorems [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  88. S. P. Novikov, “Variational methods and periodic solutions of Kirchhoff-type equations,”Funkts. Anal. Ego Pril.,15, No. 4, 37–52 (1981).

    Google Scholar 

  89. S. P. Novikov and I. Schmelltser, “Periodic solutions of the Kirchhoff equations for a free motion of a rigid body in a liquid and the extended Lusternik-Schirelman-Morse theory,”Funkts. Anal. Ego Pril.,15, No. 3, 54–66 (1981).

    Google Scholar 

  90. F. Odeh, “A bifurcation problem in the superconductivity theory,” In:Bifurcation Theory and Nonlinear Eigenvalue Problems [Russian translation], Mir, Moscow (1974), pp. 63–70.

    Google Scholar 

  91. L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko,Mathematical Theory of Optimal Processes [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  92. M. M. Postnikov,The Variational Theory of Geodesics [in Russian], Nauka, Moscow (1965).

    Google Scholar 

  93. M. M. Postnikov,Introduction to Morse Theory [in Russian], Nauka, Moscow (1971).

    Google Scholar 

  94. S. I. Pokhozhaev, “On the solvability of nonlinear equations with odd operators,”Funkts. Anal. Ego Pril.,1, No. 3, 48–55 (1967).

    Google Scholar 

  95. S. I. Pokhozhaev, “On the fiber bundle method for solving nonlinear boundary value problems,”Tr. Mat. Inst. Akad. Nauk SSSR,192, 146–163 (1990).

    MATH  MathSciNet  Google Scholar 

  96. I. V. Skrypnik,Nonlinear High-Order Elliptic Equations [in Russian], Naukova Dumka, Kiev (1973).

    Google Scholar 

  97. I. V. Skrypnik, “The solvability and properties of solutions of nonlinear elliptic equations,” In:Itogi Nauki i Tekhniki. Sovr. Probl. Mat., Vol. 9 (VINITI) (1976), pp. 131–254.

  98. I. V. Skrypnik, “Topological characteristics of the general nonlinear elliptic operators,”Dokl. Akad. Nauk SSSR,239, No. 3, 538–541 (1978).

    MATH  MathSciNet  Google Scholar 

  99. S. L. Sobolev,Equations of Mathematical Physics [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  100. S. G. Suvorov, “On the conditional extremum of functionals with discontinuous gradients,”Mat. Zametki,20, No. 4, 585–592 (1976).

    MathSciNet  Google Scholar 

  101. S. G. Suvorov, “Critical sets of mappings of Banach spaces into Euclidean ones,” In:Mathematical Analysis and Probability Theory [in Russian], Naukova Dumka, Kiev (1978), pp. 165–168.

    Google Scholar 

  102. S. G. Suvorov, “On the Lusternik-Schnirelman theory,”Sib. Mat. Zh.,19, No. 6, 670–683 (1978).

    MATH  MathSciNet  Google Scholar 

  103. S. G. Suvorov, “Critical sets in optimization problems with several constraints,”Sib. Mat. Zh.,21, No. 4, 151–160 (1980).

    MATH  MathSciNet  Google Scholar 

  104. V. M. Tikhomirov,Certain Problems of Approximation Theory [in Russian], Mosk. Gos. Univ. Press, Moscow (1976).

    Google Scholar 

  105. A. I. Fet, “Variational problems on closed manifolds,”Mat. Sb.,30, No. 2, 271–316 (1952).

    MATH  MathSciNet  Google Scholar 

  106. A. I. Fet, “The relationship between the topological properties and the number of extremals on a manifold,”Dokl. Akad. Nauk SSSR,88, No. 3, 415–417 (1953).

    MATH  MathSciNet  Google Scholar 

  107. A. I. Fet, “On a periodic problem of variational calculus in the large,”Dokl. Akad. Nauk SSSR,160, No. 2, 287–289 (1965).

    MATH  MathSciNet  Google Scholar 

  108. V. M. Filippov,Variational Principles for Nonpotential Operators [in Russian], Druzhba Narodov Univ. Press, Moscow (1985).

    Google Scholar 

  109. A. T. Fomenko,Variational Methods in Topology [in Russian], Nauka, Moscow (1982).

    Google Scholar 

  110. W. S. Tsitlanadze, “Theorems of the existence of points of minimax in Banach spaces and their applications,”Proc. Moscow Math. Soc., No. 2, 143–187 (1983).

    Google Scholar 

  111. F. L. Chernous'ko and N. V. Banichuk,Variational Problems of Mechanics and Control [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  112. A. S. Schwarts, “Certain estimates of the genus of a topological space in the Krasnosel'skii sense,”Uspekhi Mat. Nauk,12, No. 4, 209–214 (1957).

    Google Scholar 

  113. A. S. Schwarts, “The genus of a fiber bundle space,”Tr. Mosk. Mat. Ob-va, No. 10, 217–272 (1961).

    Google Scholar 

  114. L. E. El'sgolts, “The theory of invariants that estimate the number of critical points of a function defined on a manifold,”Mat. Sb.,5, 551–558 (1939).

    Google Scholar 

  115. L. E. El'sgolts, “On the problem of estimating the number of critical points of continuous functions defined on spaces that are not manifolds,”Mat. Sb.,8, 455–462 (1940).

    Google Scholar 

  116. L. E. El'sgolts, “The estimate of the number of critical points,”Uspekhi Mat. Nauk,40, 52–87 (1950).

    Google Scholar 

  117. R. A. Adams,Sobolev Spaces, Academic Press (1975).

  118. H. Amann, “Lusternik-Schnirelman theory and nonlinear eigenvalue problems,”Math. Ann.,199, 55–72 (1972).

    Article  MATH  MathSciNet  Google Scholar 

  119. H. Amann, “A note on degree theory for gradient maps,”Proc. Am. Math. Soc.,85, 591–595 (1982).

    MATH  MathSciNet  Google Scholar 

  120. H. Amann and S. Weiss, “On the uniqueness of the topological degree,”Math. Z.,130, 39–54 (1973).

    Article  MathSciNet  Google Scholar 

  121. A. Ambrosetti, “A note on the Ljusternik-Schnirelman theory for functionals that are not even,”Ric. Mat.,25, No. 2, 179–186 (1976).

    MATH  MathSciNet  Google Scholar 

  122. A. Ambrosetti and M. Badiale, “The dual variational principle and elliptic problems with discontinuous nonlinearities,”J. Math. Anal. Appl.,140, No. 2, 363–373 (1989).

    MathSciNet  Google Scholar 

  123. D. Arcoya and A. Canada, “Critical point theorems and applications to nonlinear boundary0value problems,”Nonlinear Anal., Theory, Meth. Appl.,14, No. 5, 393–411 (1990).

    MathSciNet  Google Scholar 

  124. A. Ambrosetti and Zelati V. Coti, “Critical points with lack of compactness and singular dynamical systems,”Ann. Mat. Pura Appl.,149, 237–239 (1987).

    Article  MathSciNet  Google Scholar 

  125. A. Ambrosetti and P. H. Rabinowitz, “Dual variational methods in critical point theory and applications,”J. Funct. Anal.,14, No. 4, 349–381 (1973).

    MathSciNet  Google Scholar 

  126. J.-P. Aubin and I. Ekeland,Applied Nonlinear Analysis, New York (1986).

  127. A. Bahri, “Critical points at infinity in the variational calculus,”Lect. Notes Math.,1324, 1–29 (1988).

    MATH  MathSciNet  Google Scholar 

  128. V. Benci, “Some critical point theorems and applications,”Commun. Pure Appl. Math.,33, No. 2, 147–172 (1980).

    MATH  MathSciNet  Google Scholar 

  129. V. Benci, “On critical point theory for indefinite functionals in the presence of symmetries,”Trans. Am. Math. Soc.,274, No. 2, 533–572 (1982).

    MATH  MathSciNet  Google Scholar 

  130. V. Benci and D. Fortunato, “The dual methods in critical point theory. Multiplicity results for indefinite functionals,”Ann. Mat. Pura Appl.,132, 215–242 (1982).

    Article  MathSciNet  Google Scholar 

  131. V. Benci and P. H. Rabinowitz, “Critical point theorems for indefinite functionals,”Invent. Math.,52, 241–273 (1979).

    Article  MathSciNet  Google Scholar 

  132. M. Berger, “Critical point theory for nonlinear eigenvalue problems with indefinite principal part,”Trans. Am. Math. Soc.,186, 151–169 (1973).

    Google Scholar 

  133. M. S. Berger, “New applications of the calculus of variations in the large to nonlinear elasticity,”Commun. Math. Phys.,35, No. 2, 141–150 (1974).

    MATH  Google Scholar 

  134. M. S. Berger, “New ideas in the calculus of variations in the large,” In:Nonlinear Partial Differential Equations and Their Applications. Coll. France Seminar, Vol. 6, Boston (1984), pp. 106–127.

  135. N. A. Bobylev and Yu. M. Burman, “Morse lemmas for multi-dimensional variational problems,”Nonlinear Anal., Theory, Method Appl.,18, No. 6, 595–604 (1992).

    MathSciNet  Google Scholar 

  136. H. Brezis, “Equations et inequations non lineaires dans les espaces vectoriels en dualite,”Ann. Inst. Fourier,18, No. 1, 115–175 (1968).

    MATH  MathSciNet  Google Scholar 

  137. F. E. Browder, “Nonlinear elliptic boundary value problems,”Bull. Am. Math. Soc.,69, No. 6, 862–874 (1963).

    MATH  MathSciNet  Google Scholar 

  138. F. E. Browder, “Infinite dimensional manifolds and nonlinear eigenvalue problems,”Ann. Math.,82, No. 3, 459–477 (1965).

    MATH  MathSciNet  Google Scholar 

  139. F. E. Browder, “Variational methods for nonlinear elliptic eigenvalue problems,”Bull. Am. Math. Soc.,71, No. 1, 176–183 (1965).

    MATH  MathSciNet  Google Scholar 

  140. F. E. Browder, “Topological methods for non-linear elliptic equations of arbitrary order,”Pacif. J. Math.,17, No. 1, 17–31 (1966).

    MATH  MathSciNet  Google Scholar 

  141. F. E. Browder, “Pseudo-monotone operators and the direct method of the calculus of variations,”Arch. Ration. Mech. Anal.,38, No. 4, 268–277 (1970).

    MATH  MathSciNet  Google Scholar 

  142. F. E. Browder, “Nonlinear eigenvalue problems and group invariance,” In:Functional Analysis and Related Fields, Berlin (1970), pp. 1–58.

  143. F. E. Browder, “The degree of mapping and its generalizations”Contemp. Math.,31, 15–40 (1983).

    MathSciNet  Google Scholar 

  144. F. E. Browder, “The theory of the degree of mapping for nonlinear mappings of monotone type,” In:Nonlinear Partial Differential Equations and Their Applications. Coll. France Seminar, Vol. 6, Boston (1984), pp. 165–177.

  145. F. E. Browder and W. V. Petryshyn, “The topological degree and Galerkin approximations for noncompact operators in Banach spaces,”Bull. Am. Math. Soc.,74, No. 4, 641–646 (1968).

    MathSciNet  Google Scholar 

  146. F. E. Browder and W. V. Petryshyn, “Approximation methods and the generalized topological degree for nonlinear mappings in Banach spaces,”J. Funct. Anal.,3, No. 2, 217–245 (1969).

    MathSciNet  Google Scholar 

  147. A. B. Brown, “Functional dependence,”Trans. Am. Math. Soc.,38, 379–394 (1935).

    MATH  Google Scholar 

  148. K. C. Chang, “Variational methods for nondifferentials functionals and their applications to partial differential equations,”J. Math. Anal. Appl.,80, 102–129 (1981).

    Article  MATH  MathSciNet  Google Scholar 

  149. D. C. Clark, “A variant of the Lusternik-Schnirelman theory,”Indiana Univ. Math. J.,22, 65–74 (1972).

    Article  MATH  MathSciNet  Google Scholar 

  150. D. C. Clark, “Eigenvalue bifurcation of an odd gradient operator,”Rocky Mountain J. Math.,5, 317–336 (1975).

    MATH  MathSciNet  Google Scholar 

  151. F. H. Clarke, “Generalized gradients and applications,”Trans. Am. Math. Soc.,205, 247–262 (1975).

    MATH  Google Scholar 

  152. F. H. Clarke, “A classical variational principle for periodic Hamiltonian trajectories,”Proc. Am. Math. Soc.,76, No. 1, 186–189 (1979).

    MATH  Google Scholar 

  153. F. H. Clarke, “Periodic solutions to Hamiltonian inclusions,”J. Differ. Equat.,40, No. 1, 1–6 (1980).

    Google Scholar 

  154. F. H. Clarke,Optimization and Nonsmooth Analysis, J. Wiley Interscience Publication (1983).

  155. C. V. Coffman, “Lusternik-Schnirelman theory: Complementary principles and Morse index,”Nonlinear Anal., Theory, Meth. Appl.,12, 507–529 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  156. C. V. Coffman, “A minimum-maximum principle for a class of nonlinear equations,”J. d'Anal. Math.,22, 391–419 (1969).

    MATH  MathSciNet  Google Scholar 

  157. C. V. Coffman, “Lusternik-Schnirelman theory and eigenvalue problems for monotone potential operators,”J. Funct. Anal.,14, No. 3, 237–252 (1973).

    MATH  MathSciNet  Google Scholar 

  158. D. G. Costa, “An application of the Lusternik-Schnirelman theory,” In:Proc. 15th. Braz. Sem. Anal. (1982), pp. 211–223.

  159. D. G. Costa and M. Willem, “Points critiques multiples de fonctionneles invariantes,”C.R., Acad. Sci. Ser. 1,298, No. 16, 381–384 (1984).

    MathSciNet  Google Scholar 

  160. D. G. Costa and M. Willem, “Multiple critical points of invariant functionals and applications,”Nonlinear Anal. Theory, Meth. Appl.,10, No. 9, 843–852 (1986).

    MathSciNet  Google Scholar 

  161. E. N. Dancer, “Degenerate critical points, homotopy indices and Morse inequalities, I,”J. Reine Angew. Math.,350, 1–22 (1984).

    MATH  MathSciNet  Google Scholar 

  162. E. N. Dancer, “Degenerate critical points, homotopy indices and Morse inequalities, II,”J. Reine Angew. Math.,382, 145–164 (1987).

    MATH  MathSciNet  Google Scholar 

  163. E. N. Dancer, “Degenerate critical points, homotopy indices and Morse inequalities, III,”Bull. Austral. Math. Soc.,40, No. 1, 97–108 (1989).

    MATH  MathSciNet  Google Scholar 

  164. N. J. Dunford and J. T. Schwartz,Linear Operators, Vol. 1, Interscience Publ., New York (1957).

    Google Scholar 

  165. I. Ekeland and R. Teman,Convex Analysis and Variational Problems, Elsevier North-Holland, Amsterdam (1976).

    Google Scholar 

  166. E. Fadell and P. H. Rabinowitz, “Bifurcation for odd potential operators and an alternative topological index,”J. Funct. Anal.,26, 48–67 (1977).

    Article  MathSciNet  Google Scholar 

  167. E. Fadell, “The equivariant Lusternik-Schnirelman method for invariant functionals and relative cohomological index theories,” In:Topological Methods of Nonlinear Analysis, Univ. Press, Montreal (1985), pp. 41–70.

    Google Scholar 

  168. Fan Xianling, “A note on the generalized degree for generalized gradient mappings,”Chin. Ann. Math.,5, No. 4, 615–623 (1984).

    Google Scholar 

  169. S. Fucik and I. Necas, “Ljusternik-Schnirelman theorem and nonlinear eigenvalue problems,”Math. Nachr.,53, No. 1-6, 277–289 (1972).

    MathSciNet  Google Scholar 

  170. H. Hofer, “A note on the topological degree of a critical point of mountain-pass type,”Proc. Am. Math. Soc.,90, No. 2, 309–315 (1984).

    MATH  MathSciNet  Google Scholar 

  171. H. Hofer, “The topological degree of a critical point of mountain-pass type,” In:Proc. Symp. Pure Math., Vol. 45 (1986), pp. 501–509.

  172. L. Hörmander, “Sur la fonction d'appui des ensembles convexes d'ans une espace localement convexe,”Ark. Math.,3, 180–186 (1955).

    Google Scholar 

  173. I. M. James, “On a category in the sense of Ljusternik-Schnirelman,”Topology,17, 331–318 (1977).

    Google Scholar 

  174. T. Kato,Perturbation Theory for Linear Operators. 2nd. edn., Springer (1976).

  175. J. B. Kelley and S. Antman (eds.),Bifurcation Theory and Nonlinear Eigenvalue Problems, Benjamin (1969).

  176. H. King (eds.), “Topological type of isolated critical points,”Ann. Math.,107, 385–397 (1978).

    Google Scholar 

  177. H. King, “Topological type in families of germs,”Invent. Math.,62, 1–13 (1980).

    Article  MATH  MathSciNet  Google Scholar 

  178. J. L. Lions,Quelques Methodes de Resolution de Problemes Nonlineaires, Dunod, Paris (1969).

    Google Scholar 

  179. L. Lusternik and L. Schnirelman, “Sur le probleme de trois geodesiques, fermesseur les surfaces de centre,”C.R., Acad. Sci. Ser. 1,189, 269–271 (1929).

    Google Scholar 

  180. L. Lusternik and L. Schnirelman,Methodes Topologiques dans les Problemes Variationnels, Gauthier-Villars, Paris (1934).

    Google Scholar 

  181. P. Majer, “Ljusternik-Schnirelman theory with local Palais-Smale condition and singular dynamical systems,”Ann. Inst. H. Poincare. Anal. Non Lineair,8, No. 3, 459–476 (1991).

    MATH  MathSciNet  Google Scholar 

  182. J. Mawhin and M. Willem,Critical Point Theory and Hamiltonian Systems, Springer, New York (1989).

    Google Scholar 

  183. J. Milnor, “Morse theory,”Ann. Math. Studies, No. 51, Univ. Press (1963).

  184. J. Milnor,Topology from the Differentiable Viewpoint, Univ. Virginia Press, Charlottesville (1965).

    Google Scholar 

  185. G. J. Minty, “Monotone (nonlinear) operators in Hilbert space,”Duke Math. J.,29, No. 3, 341–346 (1962).

    MATH  MathSciNet  Google Scholar 

  186. M. Morse, “The index theorem in the calculus of variations,”Duke Math. J.,4, 231–246 (1938).

    Article  MATH  MathSciNet  Google Scholar 

  187. M. Morse and S. S. Cairnes,Critical Points Theory in Global Analysis and Differential Topology, New York (1969).

  188. L. Nirenberg, “Topics in nonlinear analysis,”Lect. Notes Courant Institute, New York (1974).

  189. L. Nirenberg, “Variational and topological methods in nonlinear problems,”Bull. Am. Math. Soc.,4, No. 3, 267–302 (1981).

    MATH  MathSciNet  Google Scholar 

  190. L. Nirenberg, “Variational methods in nonlinear problems,”Lect. Notes Math.,1365, 100–119 (1989).

    MATH  MathSciNet  Google Scholar 

  191. R. S. Palais, “Lusternik-Schnirelman theory on Banach manifolds,”Topology,5, No. 2, 115–132 (1966).

    MATH  MathSciNet  Google Scholar 

  192. R. S. Palais, “Critical point theory and the minimax principle,”Proc. Symp. Pure Math.,15, 185–212 (1970).

    MATH  MathSciNet  Google Scholar 

  193. R. S. Palais and S. Smale, “A generalized Morse theory,”Bull. Am. Math. Soc.,70, 165–171 (1964).

    MathSciNet  Google Scholar 

  194. J. K. Peterson,Degree Theoretic Methods in Optimal Control, Thesis State Univ. Fort Collins, Colorado (1980).

    Google Scholar 

  195. P. H. Rabinowitz, “Variational method for nonlinear elliptic eigenvalue problems,”Indiana Univ. Math. J.,23, 729–754 (1974).

    Article  MATH  MathSciNet  Google Scholar 

  196. P. H. Rabinowitz, “Variational methods for nonlinear eigenvalue problems,” In:Eigenvalue Nonlinear Problems, Roma (1974), pp. 141–195.

  197. P. H. Rabinowitz, “A note on the topological degree for potential operators,”J. Math. Anal. Appl.,51, No. 2, 483–492 (1975).

    MATH  MathSciNet  Google Scholar 

  198. P. H. Rabinowitz, “Multiple critical points of perturbed symmetric functionals,”Trans. Am. Math. Soc.,272, 753–769 (1982).

    MATH  MathSciNet  Google Scholar 

  199. P. H. Rabinowitz, “Minimax method in critical point theory with applications to differential equations,” In:AMS Regional Conf. Ser. Math., Vol. 65, Am. Math. Soc., Providence (1986).

  200. E. N. Rothe, “Critical points and gradient fields of scalars in Hilbert spaces,”Acta Math.,85, 73–98 (1951).

    MATH  MathSciNet  Google Scholar 

  201. E. N. Rothe, “On the theories of Morse and Lusternik-Schnirelman for open bounded sets in Fredholm-Hilbert manifolds,”J. Math. Anal. Appl.,50, 80–107 (1975).

    MATH  MathSciNet  Google Scholar 

  202. A. Sard, “The measure of the critical values of differentiable maps,”Bull. Am. Math. Soc.,48, 883–890 (1942).

    MATH  MathSciNet  Google Scholar 

  203. Y. T. Schwartz, “Generalizing the Lusternik-Schnirelman theory of critical points,”Commun. Pure Appl. Math.,17, 307–315 (1964).

    MATH  Google Scholar 

  204. M. Struwe, “A generalized Palais-Smale condition and applications,”Proc. Symp. Pure Math.,45, 401–411 (1986).

    MATH  MathSciNet  Google Scholar 

  205. M. Struwe,Variational Methods, Springer, New York (1990).

    Google Scholar 

  206. A. Szulkin, “Critical point theory of Ljusternik-Schnirelman type and applications to partial differential equations,”Sem. Math. Super.,107, 35–96 (1989).

    MATH  MathSciNet  Google Scholar 

  207. A. J. Tromba, “Euler-Poincaré index theory on Banach manifolds,”Ann. Sci. Norm. Super. Pisa. Cl. Sci.,2, No. 4, 89–106 (1975).

    MATH  MathSciNet  Google Scholar 

  208. A. J. Tromba, “The Euler characteristic of vector fields on Banach manifolds and the problem of Plauteau,”Bull. Soc. Math. France.,46, 83–89 (1976).

    MATH  MathSciNet  Google Scholar 

  209. T. Wang, “A static bifurcation theorem for critical points,”Nonlinear Anal., Theory, Math. Appl.,15, 1181–1186 (1990).

    MATH  Google Scholar 

  210. T. Wang, “Lusternik-Schnirelman category theory for closed subsets of Banach manifolds,”J. Math. Anal. Appl.,149, No. 2, 412–423 (1990).

    MATH  MathSciNet  Google Scholar 

  211. Z. Wang, “Degree of equivariant gradient mappings via Morse theory,”Northwest Math. J.,6, No. 3, 339–345 (1990).

    MATH  Google Scholar 

  212. M. Willem, “Lectures on critical point theory,”Fondaco Univ. de Brazilia. Trobalto de Mat., No. 199 (1983).

  213. E. Zeidler, “Lectures on Ljusternik-Schnirelman theory for indefinite eigenvalue problems and its applications,” In:Nonlinear Analysis, Function Spaces and Applications, Leipzig (1979).

  214. E. Zeidler, “The Ljusternik-Schnirelman theory for indefinite and not necessarily odd nonlinear operators and its applications,”Nonlinear Anal.,4, 451–489 (1982).

    MathSciNet  Google Scholar 

  215. E. Zeidler, “Lusternik-Schnirelman theory on general level sets,”Math. Nachr.,129, 235–259 (1986).

    MATH  MathSciNet  Google Scholar 

Additional Literature

  1. A. Ambrosetti, “Critical points and nonlinear variational problems,”Mém. Soc. Math. France, No. 49, 1–139 (1992).

    MathSciNet  Google Scholar 

  2. T. Wang, “A minimax principle without differentiability,”J. Nanjing Univ. Math. Biquart.,6, No. 2, 45–52 (1989).

    MATH  Google Scholar 

  3. S. A. Vakhrameev, “On the Fredholm property of a certain manifold,”Uspekhi Mat. Nauk,47, No. 5, 169–170 (1992).

    MATH  MathSciNet  Google Scholar 

  4. S. A. Vakhrameev, “Critical point theory for smooth functions on Hilbert manifolds with singularities and its application to some optimal control problems,”J. Sov. Math.,67, No. 1, 2713–2811 (1993).

    MathSciNet  Google Scholar 

Download references

Authors

Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory. Vol. 12, Analiz-6, 1994.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bobylev, N.A., Korovin, S.K. Topological characteristics of extremals of variational problems. J Math Sci 78, 363–432 (1996). https://doi.org/10.1007/BF02362948

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02362948

Keywords

Navigation