Advertisement

Journal of Mathematical Sciences

, Volume 78, Issue 4, pp 363–432 | Cite as

Topological characteristics of extremals of variational problems

  • N. A. Bobylev
  • S. K. Korovin
Article

Keywords

Variational Problem Topological Characteristic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    P. S. Aleksandrov,Combinatorial Topology [in Russian], Gostekhizdat, Moscow (1947).Google Scholar
  2. 2.
    V. I. Arnold, “The index of a singular point of a vector field, the Petrovskii-Oleinik inequalities, and Hodge's mixed structures,”Funkts. Anal. Ego Pril.,12, No. 1, 1–14 (1978).MATHGoogle Scholar
  3. 3.
    N. A. Bobylev, “On the necessary condition for an extremum of functionals of variational calculus,”Avtomat. Telemekh., No. 2, 186–187 (1976).MATHMathSciNetGoogle Scholar
  4. 4.
    N. A. Bobylev, “On the approximation method of introduction of rotation for certain classes of continuous vector fields,” In:Qualitative and Approximate Methods of Investigating Operator Equations [in Russian], Yaroslayl' State Univ. Press, Yaroslavl' (1977), pp. 25–31.Google Scholar
  5. 5.
    N. A. Bobylev, “Regular and critical points of continuous functions,” In:Qualitative and Approximate Methods of Investigating Operator Equations [in Russian], yaroslavl' State Univ. Press, Yaroslavl' (1980), pp. 30–42.Google Scholar
  6. 6.
    N. A. Bobylev, “On a certain technique of investigating gradient systems and stability,”Avtomat. Telemekh., No. 8, 33–35 (1980).MATHMathSciNetGoogle Scholar
  7. 7.
    N. A. Bobylev, “On the deformation method of investigation of the quality functions of systems with an infinite number of degrees of freedom,”Avtomat. Telemekh., No. 7, 11–18 (1981).MATHMathSciNetGoogle Scholar
  8. 8.
    N. A. Bobylev, “On the deformation of functionals having a unique critical point,”Mat. Zametki,34, No. 3, 387–398 (1983).MATHMathSciNetGoogle Scholar
  9. 9.
    N. A. Bobylev, “On the topological characteristics of optimal equations,”Avtomat. Telemekh., No. 7, 64–72 (1985).MATHMathSciNetGoogle Scholar
  10. 10.
    N. A. Bobylev, “The solvability of boundary value problems and the criteria of a minimum of integral functionals,”Ukr. Mat. Zh.,37, No. 4, 418–424 (1985).MathSciNetGoogle Scholar
  11. 11.
    N. A. Bobylev, “The topological index of extremals in optimization problems,” In:Mathematical Theory of Systems [in Russian], Nauka, Moscow (1986), pp. 25–44.Google Scholar
  12. 12.
    N. A. Bobylev, “On the topological index of extremals in multidimensional variational problems,”Funkts. Anal. Ego Pril.,20, No. 2, 8–13 (1986).MATHMathSciNetGoogle Scholar
  13. 13.
    N. A. Bobylev, “On a certain characteristic of extremals in variational problems,”Dokl. Akad. Nauk SSSR,292, No. 3, 521–524 (1987).MathSciNetGoogle Scholar
  14. 14.
    N. A. Bobylev and Yu. M. Burman, “The Morse lemmas for functionals in variational calculus,”Funkts. Anal. Ego Pril.,25, No. 3, 1–11 (1991).MathSciNetGoogle Scholar
  15. 15.
    N. A. Bobylev and Yu. M. Burman, “The Morse lemmas for integral functionals,”Dokl. Akad. Nauk SSSR,317, No. 2, 267–270 (1991).MathSciNetGoogle Scholar
  16. 16.
    N. A. Bobylev, M. A. Krasnosel'skii, A. M. Krasnosel'skii, and A. V. Pokrovskii, “On some new ideas in nonlinear analysis,” In:Nelin. Gran. Zadachi, Kiev (1989), pp. 22–26.Google Scholar
  17. 17.
    N. A. Bobylev and M. A. Krasnosel'skii, “The deformation of systems into asymptotically stable ones,”Avtomat. Telemekh., No. 7, 5–8 (1974).MathSciNetGoogle Scholar
  18. 18.
    N. A. Bobylev and M. A. Krasnosel'skii, “Normal deformations in variational problems,”Dokl. Akad. Nauk SSSR,307, No. 4, 785–788 (1989).Google Scholar
  19. 19.
    N. A. Bobylev and M. A. Krasnosel'skii, “On the bifurcation of extremals in variational problems,”Dokl. Akad. Nauk SSSR,314, No. 2, 265–268 (1990).Google Scholar
  20. 20.
    V. G. Boltyanskii,Mathematical Methods of Optimal Control [in Russian], Nauka, Moscow (1973).Google Scholar
  21. 21.
    Yu. G. Borisovich, “Estimates for the number of critical points,”Dokl. Akad. Nauk SSSR,101, No. 2, 205–207 (1955).MATHMathSciNetGoogle Scholar
  22. 22.
    Yu. G. Borisovich, “On the stability of critical values of even functionals,”Dokl. Akad. Nauk SSSR,104, 165–168 (1955).MATHMathSciNetGoogle Scholar
  23. 23.
    Yu. G. Borisovich, “On critical values of some functionals in Banach spaces,”Uspekhi Mat. Nauk,12, No. 1, 157–160 (1957).MATHMathSciNetGoogle Scholar
  24. 24.
    Yu. G. Borisovich, “On a certain theorem on critical points of functionals,”Mat. Sb.,42, No. 3, 353–360 (1957).MATHMathSciNetGoogle Scholar
  25. 25.
    Yu. G. Borisovich, “Stability of critical values of functionals,”Izv. Vuzov. Mat., No. 1, 24–34 (1960).MATHGoogle Scholar
  26. 26.
    Yu. G. Borisovich, “On the relative motion of compact vector fields,”Trudy Seminara po Funkt. Anal. Issue 12, Voronezh State Univ. Press, Voronezh, 4–26 (1969).Google Scholar
  27. 27.
    Yu. G. Borisovich, B. D. Gel'man, E. M. Mukhamadiev, and V. V. Obukhovskii, “On the rotation of multivalued vector fields,”Dokl. Akad. Nauk SSSR,187, No. 5, 971–973 (1969).MathSciNetGoogle Scholar
  28. 28.
    Yu. G. Borisovich, B. D. Gel'man, A. D. Myskiš, and V. V. Obukhovskii, “Multivalued mappings,” In:Mat. Analiz, Vol. 19, Itogi Nauki i Tekhniki, All-Union Institute for Scientific and Technical Information, (VINITI) Press, Moscow (1982), pp. 127–231.Google Scholar
  29. 29.
    Yu. G. Borisovich, V. G. Zvyagin, and Yu. I. Sapronov, “Nonlinear Fredholm mappings and the Leray-Schauder theory,”Uspekhi Mat. Nauk,32, No. 4, 3–54 (1977).Google Scholar
  30. 30.
    M. M. Vainberg,Variational Methods of Investigation of Nonlinear Operators [in Russian], Gostekhizdat, Moscow (1956).Google Scholar
  31. 31.
    M. M. Vainberg,The Variational Method and the Monotone Operators Method in the Theory of Nonlinear Equations [in Russian], Nauka, Moscow (1972).Google Scholar
  32. 32.
    S. A. Vakhrameev, “The Palais-Smale theory for manifolds with angles. 1. The case of a finite codimension,”Uspekhi Mat. Nauk,45, No. 4, 141–142 (1990).MATHMathSciNetGoogle Scholar
  33. 33.
    S. A. Vakhrameev, “The Lusternik-Schnirelman theory for transversally convex subsets of Hilbert manifolds and its application in the optimal control theory,”Dokl. Akad. Nauk SSSR,319, No. 1, 18–21 (1991).MATHMathSciNetGoogle Scholar
  34. 34.
    S. A. Vakhrameev, “The Morse theory and the Lusternik-Schnirelman theory in the geometrical control theory,” In:Sovremennye Problemy Matematiki, Noveishie Dostizheniya, Vol. 39, Itogi Nauki i Tekhniki, All-Union Institute for Scientific and Technical Information, Vol. 39, (VINITI) Press, Akad. Nauk SSSR, Moscow (1991), pp. 41–117.Google Scholar
  35. 35.
    S. A. Vakhrameev and A. V. Sarychev, “Geometric control theory,” In:Algebra. Topol. Geometr., Vol. 23, Itogi Nauki i Tekhniki, All-Union Institute for Scientific and Technical Information, (VINITI) Press, Akad. Nauk SSSR, Moscow (1985), pp. 197–280.Google Scholar
  36. 36.
    L. P. Vlasov, “Approximative properties of sets in linear normed spaces,”Uspekhi Mat. Nauk,27, No. 6, 3–66 (1973).MathSciNetGoogle Scholar
  37. 37.
    Yu. N. Voinov, “The boundedness of gradients of generalized solutions of boundary-value problems for quasilinear elliptic equations in the vicinity of the boundary,”Vestn. Leningr. Gos. Univ.,2, No. 7, 4–11 (1974).MathSciNetGoogle Scholar
  38. 38.
    I. I. Voronovich, “Some estimates of the number of solutions for Karman equations related to the problem of stability of plates and hulls,” In:Problems of Hydrodynamics and Mechanics of Continuum [in Russian], Nauka, Moscow (1969), pp. 111–118.Google Scholar
  39. 39.
    V. Ginzburg and L. Landau, “Phenomenological theory of superconductivity,”Zh. Eksp. Teor. Fiz.,20, 1064 (1950).Google Scholar
  40. 40.
    I. V. Girsanov,Lectures in the Mathematical Theory of Extremal Problems [in Russian], Moscow State Univ. Press, Moscow (1970).Google Scholar
  41. 41.
    G. L. Grodzovskii, Yu. N. Ivanov, and V. V. Tokarev,The Mechanics of Space Flight. Optimization Problems [in Russian], Nauka, Moscow (1975).Google Scholar
  42. 42.
    A. M. Dement'eva, V. M. Krasnosel'skii, and M. A. Krasnosel'skii, “Degenerate critical points of functions of many variables,” In:Proc. of the Seminar on Diff. Equat., Vol. 5 Kuibyshev State Univ. Press, Kuibyshev (1980), pp. 23–32.Google Scholar
  43. 43.
    V. F. Demyanov,Minimax: Directional Differentiation [in Russian], Leningr. Gos. Univ. Press, Leningrad (1974).Google Scholar
  44. 44.
    V. F. Demyanov,Nonsmooth Problems of Optimization and Control [in Russian], Leningr. Gos. Univ. Press, Leningrad (1982).Google Scholar
  45. 45.
    V. F. Demyanov and L. V. Vasil'ev,Nondifferentiable Optimization [in Russian], Nauka, Moscow (1981).Google Scholar
  46. 46.
    A. V. Dmitruk, A. A. Milyutin, and N. P. Osmolovskii, “Lusternik's theorem and the extremum theory,”Uspekhi Mat. Nauk,35, No. 6, 11–46 (1980).MathSciNetGoogle Scholar
  47. 47.
    A. Ya. Zaslavskii, “On the critical points of Lipschitz functions on smooth manifolds,”Sib. Mat. Zh.,22, No. 1, 87–93 (1981).MATHMathSciNetGoogle Scholar
  48. 48.
    A. D. Ioffe and V. M. Tikhomirov,The Theory of Extremal Problems [in Russian], Nauka, Moscow (1974).Google Scholar
  49. 49.
    V. P. Kardashov, “The conditions for differentiability of a multudimensional functional in variational calculus,”Vestn. Mosk. Gos. Univ., Mat., Mekh., No. 1, 23–31 (1971).MATHGoogle Scholar
  50. 50.
    P. I. Kachurovskii, “On monotone operators and convex functionals,”Uspekhi Mat. Nauk,15, No. 4, 213–215 (1960).Google Scholar
  51. 51.
    P. I. Kachurovskii, “Nonlinear monotone operators in Banach spaces,”Uspekhi Mat. Nauk,23, No. 2, 121–168 (1968).MATHGoogle Scholar
  52. 52.
    V. S. Klimov, “On the rotation of potential vector fields,”Mat. Zametki,20, No. 2, 253–261 (1976).MATHMathSciNetGoogle Scholar
  53. 53.
    V. S. Klimov, “On functionals with an infinite number of critical values,”Mat. Sb.,100, No. 1, 101–115 (1976).MathSciNetGoogle Scholar
  54. 54.
    V. S. Klimov, “On the number of solutions of boundary-value problems on the nonlinear theory of hulls,”Dokl. Akad. Nauk SSSR,247, No. 1, 57–60 (1980).MathSciNetGoogle Scholar
  55. 55.
    V. S. Klimov, “Nontrivial solutions of equations with potential operators,”Sib. Mat. Zh.,21, No. 6, 28–45 (1980).MATHMathSciNetGoogle Scholar
  56. 56.
    V. S. Klimov, “Nontrivial solutions of the Ginzburg-Landau equations,”Teor. Mat. Fiz.,50, No. 3, 383–389 (1982).MathSciNetGoogle Scholar
  57. 57.
    V. S. Klimov, “Eigenvectors on nonlinear potential operators,”Sib. Mat. Zh.,24, No. 1, 105–112 (1983).MathSciNetGoogle Scholar
  58. 58.
    V. S. Klimov and N. V. Senchakova, “On the relative rotation of multivalued potential vector fields,”Mat. Sb.,112, No. 10, 1393–1407 (1991).Google Scholar
  59. 59.
    M. A. Krasnosel'skii, “Estimates for the number of critical points,”Uspekhi Mat. Nauk,7, 157–164 (1952).MATHGoogle Scholar
  60. 60.
    M. A. Krasnosel'skii, “The stability of critical values of even functionals on a sphere,”Mat. Sb.,37, No. 2, 301–322 (1955).MATHMathSciNetGoogle Scholar
  61. 61.
    M. A. Krasnosel'skii,Topological Methods in the Theory of Nonlinear Integral Equations [in Russian], Gostekhizdat, Moscow (1956).Google Scholar
  62. 62.
    M. A. Krasnosel'skii,The Shift Operator along the Trajectories of Differential Equations [in Russian], Fizmatgiz, Moscow (1966).Google Scholar
  63. 63.
    M. A. Krasnosel'skii, N. A. Bobylev, and E. M. Mukhamadiev, “On a certain scheme of investigating degenerate extremals of functionals of the classical variational calculus,”Dokl. Akad. Nauk SSSR,240, No. 3, 530–533 (1978).MathSciNetGoogle Scholar
  64. 64.
    M. A. Krasnosel'skii, N. A. Bobylev, and E. M. Mukhamadiev, “On the topological index of extremals of functionals in variational calculus,”Dokl. Akad. Nauk SSSR,21, No. 8, 8–11 (1978).MathSciNetGoogle Scholar
  65. 65.
    M. A. Krasnosel'skii and P. P. Zabreiko,Geometric Methods of Nonlinear Analysis [in Russian], Nauka, Moscow (1975).Google Scholar
  66. 66.
    M. A. Krasnosel'skii, E. M. Mukhamadiev, and A. V. Pokrovskii, “Bifurcation values of parameters in variational problems,”Dokl. Akad. Nauk SSSR,255, No. 2, 282–286 (1980).MathSciNetGoogle Scholar
  67. 67.
    M. A. Krasnosel'skii, A. I. Perov, A. I. Povolotskii, and P. P. Zabreiko,Vector Fields in the Plane [in Russian], Fizmatgiz, Moscow (1963).Google Scholar
  68. 68.
    V. V. Kozlov, “The principle of least action and periodic solutions in classical mechanics problems,”Prikl. Mat. Mekh.,40, No. 3, 399–407 (1976).MATHGoogle Scholar
  69. 69.
    V. V. Kozlov, “The calculus of variations in the large and the classical mechanics,”Uspekhi Mat. Nauk,40, No. 2, 33–60 (1985).MATHMathSciNetGoogle Scholar
  70. 70.
    A. I. Koshelev,The Regularity of Solutions of Elliptic Equations and Systems [in Russian], Nauka, Moscow (1986).Google Scholar
  71. 71.
    I. A. Kuzin, “On a certain variational method of finding critical points of a functional and its applications,”Dokl. Akad. Nauk SSSR,314, No. 1, 85–88 (1990).MATHGoogle Scholar
  72. 72.
    M. A. Lavrent'ev and L. A. Lusternik,Fundamentals of Variational Calculus [in Russian], Dept. Sci.-Tech. Inst., Moscow (1935).Google Scholar
  73. 73.
    O. A. Ladyshenskaya,Mathematical Problems of the Dynamics of Viscous Incompressible Liquids [in Russian], Nauka, Moscow (1970).Google Scholar
  74. 74.
    O. A. Ladyzhenskaya and N. N. Ural'tseva,Linear and Quasilinear Equations of Elliptic Type [in Russian], Nauka, Moscow (1973).Google Scholar
  75. 75.
    A. Langenbakh, “On the application of the variational principle to certain differential equations,”Dokl. Akad. Nauk SSSR,121, No. 2, 214–217 (1958).MathSciNetGoogle Scholar
  76. 76.
    L. D. Landau,Collected Works, Vol. 2 [in Russian], Nauka, Moscow (1969).Google Scholar
  77. 77.
    J. Leray and Yu. Schauder, “Topology and functional equations,”Uspekhi Mat. Nauk,1, No. 3, 71–95 (1946).Google Scholar
  78. 78.
    E. M. Lifshits and L. P. Pitaevskii,Statistical Physics, Vol. 2 [in Russian], Nauka, Moscow (1978).Google Scholar
  79. 79.
    L. A. Lusternik, “Topology and the calculus of variations,”Uspekhi Mat. Nauk,1, No. 1, 30–56 (1946).Google Scholar
  80. 80.
    L. A. Lusternik, “The topology of functional spaces and the calculus of variations,”Tr. Mat. Inst. Akad. Nauk SSSR,19 (1947).Google Scholar
  81. 81.
    L. A. Lusternik,Convex Figures and Polyhedrons [in Russian], Gostekhizdat, Moscow (1956).Google Scholar
  82. 82.
    L. A. Lusternik and V. I. Sobolev,Elements of Functional Analysis [in Russian], Nauka, Moscow (1965).Google Scholar
  83. 83.
    L. A. Lusternik and A. I. Fet, “Variational problems on closed manifolds,”Dokl. Akad. Nauk SSSR,81, No. 1, 17–18 (1951).Google Scholar
  84. 84.
    L. A. Lusternik and L. G. Schnirelman, “Topological methods in variational problems,” In:Proc. Research Inst. Math. Mech., GITL, Mosk. Gos. Univ. (1930).Google Scholar
  85. 85.
    L. A. Lusternik and L. G. Schnirelman, “Topological methods in variational problems and their applications to the differential geometry of surfaces,”Uspekhi Mat. Nauk,2, No. 1, 166–217 (1947).Google Scholar
  86. 86.
    Yu. I. Neimark,The Method of Point Mappings in the Theory of Nonlinear Oscillations [in Russian], Nauka, Moscow (1972).Google Scholar
  87. 87.
    S. M. Nikol'skii,The Approximation of Functions of Several Variables and the Embedding Theorems [in Russian], Nauka, Moscow (1978).Google Scholar
  88. 88.
    S. P. Novikov, “Variational methods and periodic solutions of Kirchhoff-type equations,”Funkts. Anal. Ego Pril.,15, No. 4, 37–52 (1981).Google Scholar
  89. 89.
    S. P. Novikov and I. Schmelltser, “Periodic solutions of the Kirchhoff equations for a free motion of a rigid body in a liquid and the extended Lusternik-Schirelman-Morse theory,”Funkts. Anal. Ego Pril.,15, No. 3, 54–66 (1981).Google Scholar
  90. 90.
    F. Odeh, “A bifurcation problem in the superconductivity theory,” In:Bifurcation Theory and Nonlinear Eigenvalue Problems [Russian translation], Mir, Moscow (1974), pp. 63–70.Google Scholar
  91. 91.
    L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko,Mathematical Theory of Optimal Processes [in Russian], Nauka, Moscow (1976).Google Scholar
  92. 92.
    M. M. Postnikov,The Variational Theory of Geodesics [in Russian], Nauka, Moscow (1965).Google Scholar
  93. 93.
    M. M. Postnikov,Introduction to Morse Theory [in Russian], Nauka, Moscow (1971).Google Scholar
  94. 94.
    S. I. Pokhozhaev, “On the solvability of nonlinear equations with odd operators,”Funkts. Anal. Ego Pril.,1, No. 3, 48–55 (1967).Google Scholar
  95. 95.
    S. I. Pokhozhaev, “On the fiber bundle method for solving nonlinear boundary value problems,”Tr. Mat. Inst. Akad. Nauk SSSR,192, 146–163 (1990).MATHMathSciNetGoogle Scholar
  96. 96.
    I. V. Skrypnik,Nonlinear High-Order Elliptic Equations [in Russian], Naukova Dumka, Kiev (1973).Google Scholar
  97. 97.
    I. V. Skrypnik, “The solvability and properties of solutions of nonlinear elliptic equations,” In:Itogi Nauki i Tekhniki. Sovr. Probl. Mat., Vol. 9 (VINITI) (1976), pp. 131–254.Google Scholar
  98. 98.
    I. V. Skrypnik, “Topological characteristics of the general nonlinear elliptic operators,”Dokl. Akad. Nauk SSSR,239, No. 3, 538–541 (1978).MATHMathSciNetGoogle Scholar
  99. 99.
    S. L. Sobolev,Equations of Mathematical Physics [in Russian], Nauka, Moscow (1966).Google Scholar
  100. 100.
    S. G. Suvorov, “On the conditional extremum of functionals with discontinuous gradients,”Mat. Zametki,20, No. 4, 585–592 (1976).MathSciNetGoogle Scholar
  101. 101.
    S. G. Suvorov, “Critical sets of mappings of Banach spaces into Euclidean ones,” In:Mathematical Analysis and Probability Theory [in Russian], Naukova Dumka, Kiev (1978), pp. 165–168.Google Scholar
  102. 102.
    S. G. Suvorov, “On the Lusternik-Schnirelman theory,”Sib. Mat. Zh.,19, No. 6, 670–683 (1978).MATHMathSciNetGoogle Scholar
  103. 103.
    S. G. Suvorov, “Critical sets in optimization problems with several constraints,”Sib. Mat. Zh.,21, No. 4, 151–160 (1980).MATHMathSciNetGoogle Scholar
  104. 104.
    V. M. Tikhomirov,Certain Problems of Approximation Theory [in Russian], Mosk. Gos. Univ. Press, Moscow (1976).Google Scholar
  105. 105.
    A. I. Fet, “Variational problems on closed manifolds,”Mat. Sb.,30, No. 2, 271–316 (1952).MATHMathSciNetGoogle Scholar
  106. 106.
    A. I. Fet, “The relationship between the topological properties and the number of extremals on a manifold,”Dokl. Akad. Nauk SSSR,88, No. 3, 415–417 (1953).MATHMathSciNetGoogle Scholar
  107. 107.
    A. I. Fet, “On a periodic problem of variational calculus in the large,”Dokl. Akad. Nauk SSSR,160, No. 2, 287–289 (1965).MATHMathSciNetGoogle Scholar
  108. 108.
    V. M. Filippov,Variational Principles for Nonpotential Operators [in Russian], Druzhba Narodov Univ. Press, Moscow (1985).Google Scholar
  109. 109.
    A. T. Fomenko,Variational Methods in Topology [in Russian], Nauka, Moscow (1982).Google Scholar
  110. 110.
    W. S. Tsitlanadze, “Theorems of the existence of points of minimax in Banach spaces and their applications,”Proc. Moscow Math. Soc., No. 2, 143–187 (1983).Google Scholar
  111. 111.
    F. L. Chernous'ko and N. V. Banichuk,Variational Problems of Mechanics and Control [in Russian], Nauka, Moscow (1973).Google Scholar
  112. 112.
    A. S. Schwarts, “Certain estimates of the genus of a topological space in the Krasnosel'skii sense,”Uspekhi Mat. Nauk,12, No. 4, 209–214 (1957).Google Scholar
  113. 113.
    A. S. Schwarts, “The genus of a fiber bundle space,”Tr. Mosk. Mat. Ob-va, No. 10, 217–272 (1961).Google Scholar
  114. 114.
    L. E. El'sgolts, “The theory of invariants that estimate the number of critical points of a function defined on a manifold,”Mat. Sb.,5, 551–558 (1939).Google Scholar
  115. 115.
    L. E. El'sgolts, “On the problem of estimating the number of critical points of continuous functions defined on spaces that are not manifolds,”Mat. Sb.,8, 455–462 (1940).Google Scholar
  116. 116.
    L. E. El'sgolts, “The estimate of the number of critical points,”Uspekhi Mat. Nauk,40, 52–87 (1950).Google Scholar
  117. 117.
    R. A. Adams,Sobolev Spaces, Academic Press (1975).Google Scholar
  118. 118.
    H. Amann, “Lusternik-Schnirelman theory and nonlinear eigenvalue problems,”Math. Ann.,199, 55–72 (1972).CrossRefMATHMathSciNetGoogle Scholar
  119. 119.
    H. Amann, “A note on degree theory for gradient maps,”Proc. Am. Math. Soc.,85, 591–595 (1982).MATHMathSciNetGoogle Scholar
  120. 120.
    H. Amann and S. Weiss, “On the uniqueness of the topological degree,”Math. Z.,130, 39–54 (1973).CrossRefMathSciNetGoogle Scholar
  121. 121.
    A. Ambrosetti, “A note on the Ljusternik-Schnirelman theory for functionals that are not even,”Ric. Mat.,25, No. 2, 179–186 (1976).MATHMathSciNetGoogle Scholar
  122. 122.
    A. Ambrosetti and M. Badiale, “The dual variational principle and elliptic problems with discontinuous nonlinearities,”J. Math. Anal. Appl.,140, No. 2, 363–373 (1989).MathSciNetGoogle Scholar
  123. 123.
    D. Arcoya and A. Canada, “Critical point theorems and applications to nonlinear boundary0value problems,”Nonlinear Anal., Theory, Meth. Appl.,14, No. 5, 393–411 (1990).MathSciNetGoogle Scholar
  124. 124.
    A. Ambrosetti and Zelati V. Coti, “Critical points with lack of compactness and singular dynamical systems,”Ann. Mat. Pura Appl.,149, 237–239 (1987).CrossRefMathSciNetGoogle Scholar
  125. 125.
    A. Ambrosetti and P. H. Rabinowitz, “Dual variational methods in critical point theory and applications,”J. Funct. Anal.,14, No. 4, 349–381 (1973).MathSciNetGoogle Scholar
  126. 126.
    J.-P. Aubin and I. Ekeland,Applied Nonlinear Analysis, New York (1986).Google Scholar
  127. 127.
    A. Bahri, “Critical points at infinity in the variational calculus,”Lect. Notes Math.,1324, 1–29 (1988).MATHMathSciNetGoogle Scholar
  128. 128.
    V. Benci, “Some critical point theorems and applications,”Commun. Pure Appl. Math.,33, No. 2, 147–172 (1980).MATHMathSciNetGoogle Scholar
  129. 129.
    V. Benci, “On critical point theory for indefinite functionals in the presence of symmetries,”Trans. Am. Math. Soc.,274, No. 2, 533–572 (1982).MATHMathSciNetGoogle Scholar
  130. 130.
    V. Benci and D. Fortunato, “The dual methods in critical point theory. Multiplicity results for indefinite functionals,”Ann. Mat. Pura Appl.,132, 215–242 (1982).CrossRefMathSciNetGoogle Scholar
  131. 131.
    V. Benci and P. H. Rabinowitz, “Critical point theorems for indefinite functionals,”Invent. Math.,52, 241–273 (1979).CrossRefMathSciNetGoogle Scholar
  132. 132.
    M. Berger, “Critical point theory for nonlinear eigenvalue problems with indefinite principal part,”Trans. Am. Math. Soc.,186, 151–169 (1973).Google Scholar
  133. 133.
    M. S. Berger, “New applications of the calculus of variations in the large to nonlinear elasticity,”Commun. Math. Phys.,35, No. 2, 141–150 (1974).MATHGoogle Scholar
  134. 134.
    M. S. Berger, “New ideas in the calculus of variations in the large,” In:Nonlinear Partial Differential Equations and Their Applications. Coll. France Seminar, Vol. 6, Boston (1984), pp. 106–127.Google Scholar
  135. 135.
    N. A. Bobylev and Yu. M. Burman, “Morse lemmas for multi-dimensional variational problems,”Nonlinear Anal., Theory, Method Appl.,18, No. 6, 595–604 (1992).MathSciNetGoogle Scholar
  136. 136.
    H. Brezis, “Equations et inequations non lineaires dans les espaces vectoriels en dualite,”Ann. Inst. Fourier,18, No. 1, 115–175 (1968).MATHMathSciNetGoogle Scholar
  137. 137.
    F. E. Browder, “Nonlinear elliptic boundary value problems,”Bull. Am. Math. Soc.,69, No. 6, 862–874 (1963).MATHMathSciNetGoogle Scholar
  138. 138.
    F. E. Browder, “Infinite dimensional manifolds and nonlinear eigenvalue problems,”Ann. Math.,82, No. 3, 459–477 (1965).MATHMathSciNetGoogle Scholar
  139. 139.
    F. E. Browder, “Variational methods for nonlinear elliptic eigenvalue problems,”Bull. Am. Math. Soc.,71, No. 1, 176–183 (1965).MATHMathSciNetGoogle Scholar
  140. 140.
    F. E. Browder, “Topological methods for non-linear elliptic equations of arbitrary order,”Pacif. J. Math.,17, No. 1, 17–31 (1966).MATHMathSciNetGoogle Scholar
  141. 141.
    F. E. Browder, “Pseudo-monotone operators and the direct method of the calculus of variations,”Arch. Ration. Mech. Anal.,38, No. 4, 268–277 (1970).MATHMathSciNetGoogle Scholar
  142. 142.
    F. E. Browder, “Nonlinear eigenvalue problems and group invariance,” In:Functional Analysis and Related Fields, Berlin (1970), pp. 1–58.Google Scholar
  143. 143.
    F. E. Browder, “The degree of mapping and its generalizations”Contemp. Math.,31, 15–40 (1983).MathSciNetGoogle Scholar
  144. 144.
    F. E. Browder, “The theory of the degree of mapping for nonlinear mappings of monotone type,” In:Nonlinear Partial Differential Equations and Their Applications. Coll. France Seminar, Vol. 6, Boston (1984), pp. 165–177.Google Scholar
  145. 145.
    F. E. Browder and W. V. Petryshyn, “The topological degree and Galerkin approximations for noncompact operators in Banach spaces,”Bull. Am. Math. Soc.,74, No. 4, 641–646 (1968).MathSciNetGoogle Scholar
  146. 146.
    F. E. Browder and W. V. Petryshyn, “Approximation methods and the generalized topological degree for nonlinear mappings in Banach spaces,”J. Funct. Anal.,3, No. 2, 217–245 (1969).MathSciNetGoogle Scholar
  147. 147.
    A. B. Brown, “Functional dependence,”Trans. Am. Math. Soc.,38, 379–394 (1935).MATHGoogle Scholar
  148. 148.
    K. C. Chang, “Variational methods for nondifferentials functionals and their applications to partial differential equations,”J. Math. Anal. Appl.,80, 102–129 (1981).CrossRefMATHMathSciNetGoogle Scholar
  149. 149.
    D. C. Clark, “A variant of the Lusternik-Schnirelman theory,”Indiana Univ. Math. J.,22, 65–74 (1972).CrossRefMATHMathSciNetGoogle Scholar
  150. 150.
    D. C. Clark, “Eigenvalue bifurcation of an odd gradient operator,”Rocky Mountain J. Math.,5, 317–336 (1975).MATHMathSciNetGoogle Scholar
  151. 151.
    F. H. Clarke, “Generalized gradients and applications,”Trans. Am. Math. Soc.,205, 247–262 (1975).MATHGoogle Scholar
  152. 152.
    F. H. Clarke, “A classical variational principle for periodic Hamiltonian trajectories,”Proc. Am. Math. Soc.,76, No. 1, 186–189 (1979).MATHGoogle Scholar
  153. 153.
    F. H. Clarke, “Periodic solutions to Hamiltonian inclusions,”J. Differ. Equat.,40, No. 1, 1–6 (1980).Google Scholar
  154. 154.
    F. H. Clarke,Optimization and Nonsmooth Analysis, J. Wiley Interscience Publication (1983).Google Scholar
  155. 155.
    C. V. Coffman, “Lusternik-Schnirelman theory: Complementary principles and Morse index,”Nonlinear Anal., Theory, Meth. Appl.,12, 507–529 (1988).CrossRefMATHMathSciNetGoogle Scholar
  156. 156.
    C. V. Coffman, “A minimum-maximum principle for a class of nonlinear equations,”J. d'Anal. Math.,22, 391–419 (1969).MATHMathSciNetGoogle Scholar
  157. 157.
    C. V. Coffman, “Lusternik-Schnirelman theory and eigenvalue problems for monotone potential operators,”J. Funct. Anal.,14, No. 3, 237–252 (1973).MATHMathSciNetGoogle Scholar
  158. 158.
    D. G. Costa, “An application of the Lusternik-Schnirelman theory,” In:Proc. 15th. Braz. Sem. Anal. (1982), pp. 211–223.Google Scholar
  159. 159.
    D. G. Costa and M. Willem, “Points critiques multiples de fonctionneles invariantes,”C.R., Acad. Sci. Ser. 1,298, No. 16, 381–384 (1984).MathSciNetGoogle Scholar
  160. 160.
    D. G. Costa and M. Willem, “Multiple critical points of invariant functionals and applications,”Nonlinear Anal. Theory, Meth. Appl.,10, No. 9, 843–852 (1986).MathSciNetGoogle Scholar
  161. 161.
    E. N. Dancer, “Degenerate critical points, homotopy indices and Morse inequalities, I,”J. Reine Angew. Math.,350, 1–22 (1984).MATHMathSciNetGoogle Scholar
  162. 162.
    E. N. Dancer, “Degenerate critical points, homotopy indices and Morse inequalities, II,”J. Reine Angew. Math.,382, 145–164 (1987).MATHMathSciNetGoogle Scholar
  163. 163.
    E. N. Dancer, “Degenerate critical points, homotopy indices and Morse inequalities, III,”Bull. Austral. Math. Soc.,40, No. 1, 97–108 (1989).MATHMathSciNetGoogle Scholar
  164. 164.
    N. J. Dunford and J. T. Schwartz,Linear Operators, Vol. 1, Interscience Publ., New York (1957).Google Scholar
  165. 165.
    I. Ekeland and R. Teman,Convex Analysis and Variational Problems, Elsevier North-Holland, Amsterdam (1976).Google Scholar
  166. 166.
    E. Fadell and P. H. Rabinowitz, “Bifurcation for odd potential operators and an alternative topological index,”J. Funct. Anal.,26, 48–67 (1977).CrossRefMathSciNetGoogle Scholar
  167. 167.
    E. Fadell, “The equivariant Lusternik-Schnirelman method for invariant functionals and relative cohomological index theories,” In:Topological Methods of Nonlinear Analysis, Univ. Press, Montreal (1985), pp. 41–70.Google Scholar
  168. 168.
    Fan Xianling, “A note on the generalized degree for generalized gradient mappings,”Chin. Ann. Math.,5, No. 4, 615–623 (1984).Google Scholar
  169. 169.
    S. Fucik and I. Necas, “Ljusternik-Schnirelman theorem and nonlinear eigenvalue problems,”Math. Nachr.,53, No. 1-6, 277–289 (1972).MathSciNetGoogle Scholar
  170. 170.
    H. Hofer, “A note on the topological degree of a critical point of mountain-pass type,”Proc. Am. Math. Soc.,90, No. 2, 309–315 (1984).MATHMathSciNetGoogle Scholar
  171. 171.
    H. Hofer, “The topological degree of a critical point of mountain-pass type,” In:Proc. Symp. Pure Math., Vol. 45 (1986), pp. 501–509.Google Scholar
  172. 172.
    L. Hörmander, “Sur la fonction d'appui des ensembles convexes d'ans une espace localement convexe,”Ark. Math.,3, 180–186 (1955).Google Scholar
  173. 173.
    I. M. James, “On a category in the sense of Ljusternik-Schnirelman,”Topology,17, 331–318 (1977).Google Scholar
  174. 174.
    T. Kato,Perturbation Theory for Linear Operators. 2nd. edn., Springer (1976).Google Scholar
  175. 175.
    J. B. Kelley and S. Antman (eds.),Bifurcation Theory and Nonlinear Eigenvalue Problems, Benjamin (1969).Google Scholar
  176. 176.
    H. King (eds.), “Topological type of isolated critical points,”Ann. Math.,107, 385–397 (1978).Google Scholar
  177. 177.
    H. King, “Topological type in families of germs,”Invent. Math.,62, 1–13 (1980).CrossRefMATHMathSciNetGoogle Scholar
  178. 178.
    J. L. Lions,Quelques Methodes de Resolution de Problemes Nonlineaires, Dunod, Paris (1969).Google Scholar
  179. 179.
    L. Lusternik and L. Schnirelman, “Sur le probleme de trois geodesiques, fermesseur les surfaces de centre,”C.R., Acad. Sci. Ser. 1,189, 269–271 (1929).Google Scholar
  180. 180.
    L. Lusternik and L. Schnirelman,Methodes Topologiques dans les Problemes Variationnels, Gauthier-Villars, Paris (1934).Google Scholar
  181. 181.
    P. Majer, “Ljusternik-Schnirelman theory with local Palais-Smale condition and singular dynamical systems,”Ann. Inst. H. Poincare. Anal. Non Lineair,8, No. 3, 459–476 (1991).MATHMathSciNetGoogle Scholar
  182. 182.
    J. Mawhin and M. Willem,Critical Point Theory and Hamiltonian Systems, Springer, New York (1989).Google Scholar
  183. 183.
    J. Milnor, “Morse theory,”Ann. Math. Studies, No. 51, Univ. Press (1963).Google Scholar
  184. 184.
    J. Milnor,Topology from the Differentiable Viewpoint, Univ. Virginia Press, Charlottesville (1965).Google Scholar
  185. 185.
    G. J. Minty, “Monotone (nonlinear) operators in Hilbert space,”Duke Math. J.,29, No. 3, 341–346 (1962).MATHMathSciNetGoogle Scholar
  186. 186.
    M. Morse, “The index theorem in the calculus of variations,”Duke Math. J.,4, 231–246 (1938).CrossRefMATHMathSciNetGoogle Scholar
  187. 187.
    M. Morse and S. S. Cairnes,Critical Points Theory in Global Analysis and Differential Topology, New York (1969).Google Scholar
  188. 188.
    L. Nirenberg, “Topics in nonlinear analysis,”Lect. Notes Courant Institute, New York (1974).Google Scholar
  189. 189.
    L. Nirenberg, “Variational and topological methods in nonlinear problems,”Bull. Am. Math. Soc.,4, No. 3, 267–302 (1981).MATHMathSciNetGoogle Scholar
  190. 190.
    L. Nirenberg, “Variational methods in nonlinear problems,”Lect. Notes Math.,1365, 100–119 (1989).MATHMathSciNetGoogle Scholar
  191. 191.
    R. S. Palais, “Lusternik-Schnirelman theory on Banach manifolds,”Topology,5, No. 2, 115–132 (1966).MATHMathSciNetGoogle Scholar
  192. 192.
    R. S. Palais, “Critical point theory and the minimax principle,”Proc. Symp. Pure Math.,15, 185–212 (1970).MATHMathSciNetGoogle Scholar
  193. 193.
    R. S. Palais and S. Smale, “A generalized Morse theory,”Bull. Am. Math. Soc.,70, 165–171 (1964).MathSciNetGoogle Scholar
  194. 194.
    J. K. Peterson,Degree Theoretic Methods in Optimal Control, Thesis State Univ. Fort Collins, Colorado (1980).Google Scholar
  195. 195.
    P. H. Rabinowitz, “Variational method for nonlinear elliptic eigenvalue problems,”Indiana Univ. Math. J.,23, 729–754 (1974).CrossRefMATHMathSciNetGoogle Scholar
  196. 196.
    P. H. Rabinowitz, “Variational methods for nonlinear eigenvalue problems,” In:Eigenvalue Nonlinear Problems, Roma (1974), pp. 141–195.Google Scholar
  197. 197.
    P. H. Rabinowitz, “A note on the topological degree for potential operators,”J. Math. Anal. Appl.,51, No. 2, 483–492 (1975).MATHMathSciNetGoogle Scholar
  198. 198.
    P. H. Rabinowitz, “Multiple critical points of perturbed symmetric functionals,”Trans. Am. Math. Soc.,272, 753–769 (1982).MATHMathSciNetGoogle Scholar
  199. 199.
    P. H. Rabinowitz, “Minimax method in critical point theory with applications to differential equations,” In:AMS Regional Conf. Ser. Math., Vol. 65, Am. Math. Soc., Providence (1986).Google Scholar
  200. 200.
    E. N. Rothe, “Critical points and gradient fields of scalars in Hilbert spaces,”Acta Math.,85, 73–98 (1951).MATHMathSciNetGoogle Scholar
  201. 201.
    E. N. Rothe, “On the theories of Morse and Lusternik-Schnirelman for open bounded sets in Fredholm-Hilbert manifolds,”J. Math. Anal. Appl.,50, 80–107 (1975).MATHMathSciNetGoogle Scholar
  202. 202.
    A. Sard, “The measure of the critical values of differentiable maps,”Bull. Am. Math. Soc.,48, 883–890 (1942).MATHMathSciNetGoogle Scholar
  203. 203.
    Y. T. Schwartz, “Generalizing the Lusternik-Schnirelman theory of critical points,”Commun. Pure Appl. Math.,17, 307–315 (1964).MATHGoogle Scholar
  204. 204.
    M. Struwe, “A generalized Palais-Smale condition and applications,”Proc. Symp. Pure Math.,45, 401–411 (1986).MATHMathSciNetGoogle Scholar
  205. 205.
    M. Struwe,Variational Methods, Springer, New York (1990).Google Scholar
  206. 206.
    A. Szulkin, “Critical point theory of Ljusternik-Schnirelman type and applications to partial differential equations,”Sem. Math. Super.,107, 35–96 (1989).MATHMathSciNetGoogle Scholar
  207. 207.
    A. J. Tromba, “Euler-Poincaré index theory on Banach manifolds,”Ann. Sci. Norm. Super. Pisa. Cl. Sci.,2, No. 4, 89–106 (1975).MATHMathSciNetGoogle Scholar
  208. 208.
    A. J. Tromba, “The Euler characteristic of vector fields on Banach manifolds and the problem of Plauteau,”Bull. Soc. Math. France.,46, 83–89 (1976).MATHMathSciNetGoogle Scholar
  209. 209.
    T. Wang, “A static bifurcation theorem for critical points,”Nonlinear Anal., Theory, Math. Appl.,15, 1181–1186 (1990).MATHGoogle Scholar
  210. 210.
    T. Wang, “Lusternik-Schnirelman category theory for closed subsets of Banach manifolds,”J. Math. Anal. Appl.,149, No. 2, 412–423 (1990).MATHMathSciNetGoogle Scholar
  211. 211.
    Z. Wang, “Degree of equivariant gradient mappings via Morse theory,”Northwest Math. J.,6, No. 3, 339–345 (1990).MATHGoogle Scholar
  212. 212.
    M. Willem, “Lectures on critical point theory,”Fondaco Univ. de Brazilia. Trobalto de Mat., No. 199 (1983).Google Scholar
  213. 213.
    E. Zeidler, “Lectures on Ljusternik-Schnirelman theory for indefinite eigenvalue problems and its applications,” In:Nonlinear Analysis, Function Spaces and Applications, Leipzig (1979).Google Scholar
  214. 214.
    E. Zeidler, “The Ljusternik-Schnirelman theory for indefinite and not necessarily odd nonlinear operators and its applications,”Nonlinear Anal.,4, 451–489 (1982).MathSciNetGoogle Scholar
  215. 215.
    E. Zeidler, “Lusternik-Schnirelman theory on general level sets,”Math. Nachr.,129, 235–259 (1986).MATHMathSciNetGoogle Scholar

Additional Literature

  1. 216.
    A. Ambrosetti, “Critical points and nonlinear variational problems,”Mém. Soc. Math. France, No. 49, 1–139 (1992).MathSciNetGoogle Scholar
  2. 217.
    T. Wang, “A minimax principle without differentiability,”J. Nanjing Univ. Math. Biquart.,6, No. 2, 45–52 (1989).MATHGoogle Scholar
  3. 218.
    S. A. Vakhrameev, “On the Fredholm property of a certain manifold,”Uspekhi Mat. Nauk,47, No. 5, 169–170 (1992).MATHMathSciNetGoogle Scholar
  4. 219.
    S. A. Vakhrameev, “Critical point theory for smooth functions on Hilbert manifolds with singularities and its application to some optimal control problems,”J. Sov. Math.,67, No. 1, 2713–2811 (1993).MathSciNetGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • N. A. Bobylev
  • S. K. Korovin

There are no affiliations available

Personalised recommendations