Journal of Mathematical Sciences

, Volume 79, Issue 2, pp 871–932 | Cite as

Local approximations of high order for control systems

  • A. I. Tret’yak
Article
  • 16 Downloads

Keywords

Control System Local Approximation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    A. A. Agrachev, “A second-order necessary condition for optimality in the general nonlinear case”,Mat. Sb.,105, 551–568 (1977).Google Scholar
  2. 2.
    A. A. Agrachev, S. A. Vakhrameev, and R. V. Gamkrelidze, “Differential geometric and group-theoretic methods in optimal control theory”, In:Problemy Geometrii (Itogi Nauki i Tekhn.), Vol. 14, All-Union Institute for Scientific and Technical Information (VINITI) Akad. Nauk SSSR, Moscow (1983), pp. 3–56.Google Scholar
  3. 3.
    A. A. Agrachev and R. V. Gamkrelidze, “A second-order optimality principle for the time-optimal problem”,Mat. Sb.,100, 610–643 (1976).MathSciNetGoogle Scholar
  4. 4.
    A. A. Agrachev and R. V. Gamkrelidze, “Exponential representation of flows and the chronological calculus”,Mat. Sb.,107, 467–532 (1978).MathSciNetGoogle Scholar
  5. 5.
    A. A. Agrachev and R. V. Gamkrelidze, “Chronological algebras and nonstationary vector fields”, In:Problemy Geometrii (Itogi Nauki i Tekhn.), Vol. 11, All-Union Institute for Scientific and Technical Information (VINITI) Akad. Nauk SSSR, Moscow (1980), pp. 135–176.Google Scholar
  6. 6.
    S. A. Vakhrameev, “Hilbert manifolds with angles of finite codimension and optimal control theory”, In:Algebra. Topologia. Geometria (Itogi Nauki i Tekhn.), Vol. 28, All-Union Institute for Scientific and Technical Information (VINITI) Akad. Nauk SSSR, Moscow (1990), pp. 96–171.Google Scholar
  7. 7.
    S. A. Vakhrameev and A. V. Sarychev, “Geometric theory of control”, In:Algebra. Topologia. Geometria (Itogi Nauki i Tekhn.), Vol. 23, All-Union Institute for Scientific and Technical Information (VINITI) Akad. Nauk SSSR, Moscow (1985), pp. 197–280.Google Scholar
  8. 8.
    E. V. Vinberg and V. V. Gorbatsevich, “Structure of the Lie groups and Lie algebras”, In:Sovremennye Problemy Matematiki, Fundamentalnye Napravlenya (Itogi Nauki i Tekhn.), Vol. 41, All-Union Institute for Scientific and Technical Information (VINITI) Akad. Nauk SSSR, Moscow (1989), pp. 5–258.Google Scholar
  9. 9.
    R. V. Gamkrelidze, A. A. Agrachev and S. A. Vakhrameev, “Ordinary differential equations on vector bundles and chronological calculus”, In:Sovremennye Problemy Matematiki, Noveyshie (Itogi Nauki i Tekhn. Dostijenia), Vol. 35, All-Union Institute for Scientific and Technical Information (VINITI) Akad. Nauk SSSR, Moscow (1989), pp. 3–107.Google Scholar
  10. 10.
    A. I. Tret’yak, “On a necessary condition of arbitrary order for the optimality in a time-optimal problem”,Mat. Sb.,132, 261–274 (1987).Google Scholar
  11. 11.
    A. I. Tret’yak, “On an odd-order necessary condition for optimality in a time-optimal control problem for systems linear in a control”,Mat. Sb.,181, 625–641 (1990).Google Scholar
  12. 12.
    A. I. Tret’yak, “On the necessary condition for optimality of even-order in the time-optimal problem for a class of control systems”,Dokl. Akad. Nauk SSSR,316, 1058–1060 (1991).MathSciNetGoogle Scholar
  13. 13.
    A. I. Tret’yak, “Point conditions for optimality of high order”, In:Sovremennye Problemy Matematiki, Noveyshie Dostijenia (Itogi Nauki i Tekhn.), Vol. 39, All-Union Institute for Scientific and Technical Information (VINITI) Akad. Nauk SSSR, Moscow (1991), pp. 118–177.Google Scholar
  14. 14.
    A. A. Agrachev, “Newton diagrams and tangent cones to attainable sets,” In:Colloque international sur l’analyse des systemes dynamiques controles, 3–6, Juillet, 1990, Vol. 1, Lyon, France (1990), pp. 1–12.Google Scholar
  15. 15.
    A. A. Agrachev, R. V. Gamkrelidze, and A. V. Sarychev, “Local invariants of smooth control systems”,Acta Appl. Math.,14, 191–237 (1989).CrossRefMathSciNetGoogle Scholar
  16. 16.
    R. M. Bianchini and G. Stefani, “A high order maximum principle”, In:Analysis and Control of Nonlinear Systems (C. I. Byrnes, C. F. Martin, and R. E. Sacks, eds.), Amsterdam (1989), pp. 131–136.Google Scholar
  17. 17.
    R. M. Bianchini and G. Stefani, “Graded approximations and controllability along a trajectory”,SIAM J. Contr. Optim.,28, 903–924 (1990).CrossRefMathSciNetGoogle Scholar
  18. 18.
    R. M. Bianchini and G. Stefani, “Controllability along a trajectory: a variational approach,”SIAM J. Contr. Optim.,31 (1993).Google Scholar
  19. 19.
    R. V. Gamkrelidze, “Exponential representation of solutions of ordinary differential equations”,Lect. Notes Math.,703, 117–129 (1979).MathSciNetGoogle Scholar
  20. 20.
    H. W. Knobloch, “Higher order necessary conditions in optimal control theory”,Lect. Notes Contr. Inf. Sci.,34 (1981).Google Scholar
  21. 21.
    A. J. Krener, “The high order maximal principle and its applications to singular extremals”,SIAM J. Contr. Optim.,15, 256–293 (1977).MATHMathSciNetGoogle Scholar
  22. 22.
    F. Lamnabhi-Lagarrigue, “Sur les conditions necessaires d’optimalite du deuxieme et troisieme ordre dans les problemes de commande optimale singuliere,”Lect. Notes Contr. Inf. Sci., 525–541 (1983).Google Scholar
  23. 23.
    F. Lamnabhi-Lagarrigue and G. Stefani, “Singular optimal control problems: on the necessary conditions of optimality”,SIAM J. Contr. Optim.,28, 823–840 (1990).CrossRefMathSciNetGoogle Scholar
  24. 24.
    H. J. Sussmann, “Lie brackets, real analyticity and geometric control,” In:Diff. Geom. Contr. Theory, Birkhäuser (1983), pp. 1–116.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • A. I. Tret’yak

There are no affiliations available

Personalised recommendations