Advertisement

Journal of Mathematical Sciences

, Volume 74, Issue 3, pp 977–996 | Cite as

The scientific heritage of I. P. Egorov

July 25, 1915–October 2, 1990
  • A. I. Egorov
  • N. S. Sinyukov
  • A. Ya. Sultanov
Article

Keywords

Scientific Heritage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

List of Main Publications of I. P. Egorov

  1. 1.
    I. P. EGOROV “Isometry groups of affine connection space,” Cand. Thesis, Kazan, (1945).Google Scholar
  2. 2.
    — “On the order of isometry groups of affine connection spaces,”Dokl. Akad. Nauk SSSR,57, No. 9, 867–870 (1947).MATHGoogle Scholar
  3. 3.
    — “On collineations of projective connection spaces,”Dokl. Akad. Nauk SSSR,61, No. 4 605–608 (1948).MATHGoogle Scholar
  4. 4.
    — “On isometry groups of nonsymmetrical affine connection spaces,”Dokl. Akad. Nauk SSSR,64, No. 5, 621–624 (1949).MATHGoogle Scholar
  5. 5.
    — “On strengthening the Fubini theorem about the order of the Riemannian space isometry group,”Dokl. Akak. Nauk SSSR,66, No. 5, 793–796 (1949).MATHGoogle Scholar
  6. 6.
    — “Isometry groups of affine connection spaces,”Izv. Kazan Fiz.-Mat. Ob-va, (Kazan’),14, No. 3, 53–72 (1949).Google Scholar
  7. 7.
    — “On isometry groups of spaces of general nonsymmetrical affine connection spaces,”Dokl. Akad. Nauk SSSR,72, No. 2, 265–267 (1950).Google Scholar
  8. 8.
    I. P. EPGOROV “On collineations of projective connection spaces” [in Russian], In:Trudy Seminara po Vectornomu i Tenzornomu Analizu, Moscow-Leningrad,8, No. 6 (1950), pp. 9–10.Google Scholar
  9. 9.
    — “Collineations of projective connection spaces,”Dokl. Akad. Nauk SSSR,80, No. 5, 709–712 (1951).MATHGoogle Scholar
  10. 10.
    — “Tensor characteristic of maximally mobileA n of nonzero curvature,”Dokl. Akad. Nauk SSSR,84, 2, 209–212 (1952).MATHGoogle Scholar
  11. 11.
    — “Maximally mobile semisymmetrical connectionL n,”Dokl. Akad. Nauk SSSR,84, No. 3, 433–435 (1952).MATHGoogle Scholar
  12. 12.
    — “Isometries in affine connection spaces”,Dokl. Akad. Nauk SSSR,87, No. 5, 693–696 (1952).MATHGoogle Scholar
  13. 13.
    — “On isometries in affine connection spaces,”Dokl. Akad. Nauk SSSR,89, No. 5, 781–784 (1953).MATHGoogle Scholar
  14. 14.
    — “Isometries in affine connection spaces,”Uspekhi Mat. Nauk,4 (56), 182–183 (1953).Google Scholar
  15. 15.
    I. P. EGOROV, “Isometries in affine connection spaces,”Doctoral Thesis, Moscow, (1955).Google Scholar
  16. 16.
    I. P. EGOROV, “Equiaffine third-lacunarity spaces,” In:Tr. III Vsesoyuz. Mat. Sjezda, Moscow, Akad. Nauk SSSR Press (1956) pp. 151–152.Google Scholar
  17. 17.
    — “Maximally mobile nonconstant curvature Riemannian spacesV n,”Dokl. Akad. Nauk SSSR,103, No. 1, 9–12 (1955).MATHMathSciNetGoogle Scholar
  18. 18.
    — “Equiaffine third-lacunarity spaces,”Dokl. Akad. Nauk SSSR,108, No. 6, 1007–1010 (1956).MATHMathSciNetGoogle Scholar
  19. 19.
    — “Second lacunarity Riemannian spaces,”Dokl. Akad. Nauk SSSR,111, No. 2, 276–279 (1955).Google Scholar
  20. 20.
    I. P. EGOROV Review of Yano, “Lie theory of derivation and its applications,” In:Novyye Knigi za Rubezhom,8, 11–15 (1958).Google Scholar
  21. 21.
    I. P. EGOROV “Isometries and homotheties in the Riemannian spaces,” In:Tr. 2 Konferentsii Mat. Kafedr Pedinstitutov Povolzhya, Kuibyshev (1962), pp. 138–145.Google Scholar
  22. 22.
    — “Maximally mobile Einsteinian spaces of nonconstant curvature,”Dokl. Akad. Nauk SSSR,145, No. 5, 975–978 (1962).MATHMathSciNetGoogle Scholar
  23. 23.
    — “On the Riemannian spaces of three first lacunarities in the homothetic sense,”Dokl. Akad. Nauk SSSR,145, No. 4, 730–732 (1963).Google Scholar
  24. 24.
    I. P. EGOROV “On homothetic Riemannian spaces,” In:Trudy Pervoi Nauchnoi Sessii po Koordinatsii Nauchno-Iseledovatel’shikh Rabot”, Kazan’ (1963), pp. 78–79.Google Scholar
  25. 25.
    — “Romothetic Riemannian spaces,”Lit. Mat. Sb.,2, 223–224 (1963).Google Scholar
  26. 26.
    — “On homothetic isometries in nonreducible first-class symmetrical Riemannian spaces,”Volzhskii Mat. Sb., No. 1, 61–65 (1963).MATHGoogle Scholar
  27. 27.
    I. P. EGOROV “Isometries and homotheties in Riemannian spaces,” In:Trudy Vtoroi Vsesoyuzn. Geometricheskoi Konferentsii, Khar’kov (1964).Google Scholar
  28. 28.
    — “On a class of kernel functions,”Volzhskii Mat. Sb., No. 3–6, 145–148 (1965).Google Scholar
  29. 29.
    — “On a class of kernel functions invariant under conformal metric mappings,”Volzhkii Mat. Sb., No. 4, 53–58 (1965).Google Scholar
  30. 30.
    I. P. EGOROV “On homothetic Keller-Shirokov metrics,” In:Materialy Vtoroi Pribaltiiskoi Geometricheskoi Konferentsii po Voprosam Differentsial’noi Geometrii, Tartu (1965), pp. 67–68.Google Scholar
  31. 31.
    I. P. EGOROV “Isometries in affine connection spaces,” In:Uchen. Zap. Penzen. Ped. In-ta, Kazan’, Izd. Kazanskogo Univ. (1965), pp. 3–179.Google Scholar
  32. 32.
    I. P. EGOROV “On a class of generalized differential geometric spaces of two first lacunarities,” In:Materialy 3 Pribaltiiskoi Geometricheskoi Konferentsii, Palanga (1968), pp. 61–63.Google Scholar
  33. 33.
    — “On some problems in the theory of Riemannian space isometrices,”Uchen. Zap. Penzen. Inst.,67, 187–191 (1967).Google Scholar
  34. 34.
    I. P. EGOROV “On homothetic isometries in Riemannian space dimensionless surface,” In:3 Mezhvuzovskaya Nauchnaya Konferentsiya po Problemam Geometrii, Kazan’ (1967), pp. 52–53.Google Scholar
  35. 35.
    I. P. EGOROV “On lacunas and lacunary spaces in isometry theory,” In:IV Vsesyuzn. Mezhvuz. Konferentsiya po Geometrii, Tbilisi (1969), pp. 69–72.Google Scholar
  36. 36.
    — “On isometries in Riemannian and affine connection spaces,”Uchen. Zap. Penzen. Ped. Inst.,124, 3–9 (1971).Google Scholar
  37. 37.
    I. P. EGOROV “On isometries in generalized affine connection spaces” (in collaboration with A. I. Egorov), In:Materialy 2oi Uyb. Nauchnoi Konferentsii Kirgiz. Univ., Frunze (1971), pp. 104–107.Google Scholar
  38. 38.
    — “On generalized affine connection spaces,” (in collaboration with A. I. Egorov),Uchen. Zap. Penzen. Ped. Inst.,124, 10–12 (1971).Google Scholar
  39. 39.
    I. P. EGOROV “On isometries and the problem of lacunarity in differential geometry spaces,” In:V Vsesouns. Konf. po Sovremennym Problemam Geometrii, Samarkand (1972), pp. 64.Google Scholar
  40. 40.
    — “On lacunary differential geometry spaces”,Rev. Roum. Math. Pures Appl.,15, No. 9 1365–1373 (1970).MATHGoogle Scholar
  41. 41.
    I. P. EGOROV “Isometries on spaces of linear and hypersurface elements of generalized affine connection” (in collaboration with A. I. Egorov), In:Materialy IV Pribaltiiskoi Geometricheskoi Konferentsii, Tartu (1973), pp. 35–36.Google Scholar
  42. 42.
    I. P. EGOROV “On global structure of maximally mobile nonplanar affine connection spaces,” In:IV Vsesoyuznaiya Geometricheskaya Konf. po Sovr. Probl. Geom., Vilnis (1975), pp. 89–91.Google Scholar
  43. 43.
    I. P. EGOROVIsometries in Generalized Spaces [in Russian], Ryazan’ (1977).Google Scholar
  44. 44.
    I. P. EGOROV “Authomorphisms and homothetic transformations inC-spaces” (in collaboration with L. I. Egorova), In:Vsesoyuz. Nauchnaya Konferentsiya po Neevklidovoi Geometrii, Kazan’ (1976), p. 74.Google Scholar
  45. 45.
    I. P. EGOROV “Automorphisms of generalized spaces,” In:150 Let Geometrii Lobachevskogo, Kazan’ (1976), pp. 57–73.Google Scholar
  46. 46.
    I. P. EGOROV “On automorphisms in spaces of vector and covector densities,” In: VIIVsesoyuz. Konferentsiya po Sovremennym Problemam Geometrii, Minsk (1979), p. 64.Google Scholar
  47. 47.
    Geometry [in Russian], Prosveshchenie, Moscow (1979).Google Scholar
  48. 48.
    I. P. EGOROV “Some problems of automorphisms in generalized spaces” (in collaboration with A. I. Egorov), In:Dvizheniya v Obobshchennykh Prostranstvakh: Sb. Nauch. Trudov (1982), pp. 41–52.Google Scholar
  49. 49.
    I. P. EGOROV “On homothetic mobile Finsler spaces,” In: VIIIVsesoyuz. Nauch. Konferentsiya po Sovremennym Problemam Differentsial’noi Geometrii, Odessa (1984), p. 48.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • A. I. Egorov
  • N. S. Sinyukov
  • A. Ya. Sultanov

There are no affiliations available

Personalised recommendations