Advertisement

Journal of Mathematical Sciences

, Volume 80, Issue 3, pp 1773–1801 | Cite as

The initial boundary value problem with a free surface condition for the ɛ-approximations of the Navier-Stokes equations and some of their regularizations

  • A. A. Kotsiolis
  • A. P. Oskolkov
Article
  • 29 Downloads

Abstract

We study the unique solvability in the large on the semiaxis ℝ+ of the initial boundary value problems (IBVP) with the boundary slipcondition (the natural boundary condition) for the ɛ-approximations (0.6)–(0.8), (0.20); (0.13)–(0.15), (0.21), and (0.16–0.18), (0.22) of the Navier-Stokes equations (NSE), of the NSE modified in the sense of O. A. Ladyzhenskaya, and the equations of motion of the Kelvin-Voight fluids. For the classical solutions of perturbed problems we prove certain estimates which are uniform with respect to ɛ, and show that as ɛ→0 the classical solutions of the perturbed IBVP respectively converge to the classical solutions of the IBVP with the boundary slip condition for the NSE, for the NSE (0.11) modified in the sense of Ladyzhenskaya, and for the equations (0.12) of motion of the Kelvin-Voight fluids. Bibliography: 40 titles.

Keywords

Boundary Condition Free Surface Surface Condition Classical Solution Initial Boundary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    S. Agmon, A. Douglis, and L. Nirenberg, “Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I and II,”Commun. Pure Appl. Math.,12, 627–727 (1959);17, 35–92 (1964).MathSciNetGoogle Scholar
  2. 2.
    R. Bellman,The Stability Theory of Solutions of Differential Equations, New York (1953).Google Scholar
  3. 3.
    B. Brefort, J. M. Ghidaglia, and R. Temam, “Attractors for the penalized Navier-Stokes equations,”SIAM J. Math. Anal.,19, 1–21 (1988).CrossRefMathSciNetGoogle Scholar
  4. 4.
    A. Chorin, “A numerical method for solving incompressible viscous flow problems,”J. Comput. Phys.,2, 12–26 (1967).CrossRefMATHGoogle Scholar
  5. 5.
    E. B. Fabes, J. E. Lewis, and N. M. Riviere, “Boundary value problems for the Navier-Stokes equations,”Amer. J. Math.,99, 626–668 (1977).MathSciNetGoogle Scholar
  6. 6.
    J. M. Ghidaglia, “Régularité des solutions des certain problémes aux limites linéaires liés aux équations d'Euler,”Comm. Partial Diff. Equations,9, 1265–1298 (1984).MATHMathSciNetGoogle Scholar
  7. 7.
    J. M. Ghidaglia and R. Temam, “Long time behavior for partly dissipative equations: the slightly compressible 2d-Navier-Stokes equations,”Asymptotical Analysis,1, 23–49 (1988).MathSciNetGoogle Scholar
  8. 8.
    Y. Giga and T. Miyakawa, “Solution inL p of the Navier-Stokes initial value problem,”Arch. Rat. Mech. Anal.,89, 267–281 (1988).MathSciNetGoogle Scholar
  9. 9.
    G. Grubb and V. A. Solonnikov, “Reduction of fundamental initial boundary value problems for the Stokes equation to parabolic initial boundary value problems for systems of pseudodifferential equations,”Zap. Nauchn. Semin. LOMI,163, 37–48 (1987).Google Scholar
  10. 10.
    G. Grubb and V. A. Solonnikov, “Reduction of basic initial boundary value problems for the Navier-Stokes equations to nonlinear parabolic systems of pseudodifferential equations,”Zap. Nauchn. Semin. LOMI,171, 36–52 (1989).Google Scholar
  11. 11.
    G. Grubb and V. A. Solonnikov, “Boundary value problems for the nonstationary Navier-Stokes equations treated by pseudodifferential methods,”Math. Scand.,69, 217–290 (1991).MathSciNetGoogle Scholar
  12. 12.
    A. A. Kotsiolis and A. P. Oskolkov, “Initial boundary value problems for the equations of the slightly compressible Jeffreys-Oldroyd liquids,”Zap. Nauchn. Semin. POMI,208, (1993).Google Scholar
  13. 13.
    O. A. Ladyzhenskaya,The Mathematical Theory of Viscous Incompressible Flow, second ed., New York (1969).Google Scholar
  14. 14.
    O. A. Ladyzhenskaya, “On some nonlinear problems of continuous media,”Theses of Invited Reports Internat. Congr. Math., Moscow (1966), p. 149.Google Scholar
  15. 15.
    O. A. Ladyzhenskaya, “On the modifications of the Navier-Stokes equations for large gradients of velocities,”Proc. Steklov Math. Inst.,102, 85–104 (1967);Zap. Nauchn. Semin. LOMI,7, 126–154 (1968).MATHGoogle Scholar
  16. 16.
    O. A. Ladyzhenskaya, “A globally steady difference method for the Navier-Stokes equations,”Zap. Nauchn. Semin. LOMI,14, 92–116 (1969).MATHGoogle Scholar
  17. 17.
    O. A. Ladyzhenskaya and G. A. Seregin, “A way of approximation of solutions to initial boundary value problems for the Navier-Stokes equations,”Zap. Nauchn. Semin. LOMI,197, 87–119 (1991).Google Scholar
  18. 18.
    O. A. Ladyzhenskaya, “Some globally stable approximations for the Navier-Stokes equations and some other equations for viscous incompressible fluids,”C. R. Acad. Sci. Paris,315, Ser. I, 387–392 (1992).MATHMathSciNetGoogle Scholar
  19. 19.
    O. A. Ladyzhenskaya, “New estimates for the Navier-Stokes equations and their global approximations,”Zap. Nauchn. Semin. POMI,200, 98–109 (1992).MATHGoogle Scholar
  20. 20.
    J. L. Lions,Quelques Methods de Résolution des Problemes aux Limites non Linéaires, Paris (1969).Google Scholar
  21. 21.
    T. Miyakawa, “TheL p approach to the Navier-Stokes equations with the Neumann boundary condition,”Hiroshima Math. J.,10, 517–537 (1980).MATHMathSciNetGoogle Scholar
  22. 22.
    I. Sh. Mogilevskii, “Estimates for solutions of a general initial boundary value problem for the linear nonstationary system of Navier-Stokes equations in a bounded domain,”Proc. Steklov Inst. Math.,159, 61–94 (1982).MathSciNetGoogle Scholar
  23. 23.
    A. P. Oskolkov, “On one nonstationary quasilinear system with a small parameter which regularizes the Navier-Stokes equations,”Probl. Mat. Anal., 5, LGU, Leningrad, 122–132 (1975).Google Scholar
  24. 24.
    A. P. Oskolkov, “Nonlocal problems for equations of motion of the Kelvin-Voight fluids,”Zap. Nauchn. Semin. LOMI,197, 120–158 (1991).Google Scholar
  25. 25.
    A. P. Oskolkov, “Initial boundary value problems for equations of motion of the Kelvin-Voight fluids and Oldroyd fluids,”Proc. Steklov Inst. Math.,179, 126–164 (1988).MathSciNetGoogle Scholar
  26. 26.
    A. P. Oskolkov and R. D. Shadiev, “Some nonlocal problems for the modified Navier-Stokes equations,”Zap. Nauchn. Semin. LOMI,188, 105–127 (1988).Google Scholar
  27. 27.
    A. P. Oskolkov, “On some semilinear dissipative systems with a small parameter arising in approximation solution of the Navier-Stokes equations and the equations of motion of the Kelvin-Voight and the Oldroyd fluids,”Zap. Nauchn. Semin. POMI,202, 97–116 (1992).Google Scholar
  28. 28.
    A. P. Oskolkov, “Some nonlocal problems with a free surface condition for the modified Navier-Stokes equations,”Zap. Nauchn. Semin. POMI,209 (1993).Google Scholar
  29. 29.
    R. Rautmann, “On the convergence-rate of nonstationary Navier-Stokes approximations,” in:Proc. IUTAM Symp. Paderborn 1979, (Lect. Notes Math.,771) (1980), pp. 425–449.Google Scholar
  30. 30.
    R. Rautmann, “On the Navier-Stokes initial value problem,” (G. I. Taylor memorial lecture), in: C. N. Kaul and M. Maiti (eds),Proc. Intern. Symposium on Nonlinear Continuum Mechanics, Kharagpur (1980), pp. 1–16.Google Scholar
  31. 31.
    R. Rautmann, “A semigroup approach to error estimates for nonstationary Navier-Stokes approximations,”Proc. Conference Oberwolfach 1982, Methoden Verfahren Math. Physik,27 (1983), pp. 63–77.MATHMathSciNetGoogle Scholar
  32. 32.
    J. Serrin, “Mathematical principles of classical fluid mechanics,” in:Handbuch der Physik, Bd 8/1,Strömungsmechanik I, Springer-Verlag (1959), pp. 125–263.Google Scholar
  33. 33.
    V. A. Solonnikov, “On general boundary value problems for the systems elliptic in the sense of Douglis-Nirenberg, I and II,”Izv. Akad Nauk SSSR, Ser. Mat.,28, 665–706 (1964);Proc. Steklov Inst. Math.,92, 233–297 (1966).MATHMathSciNetGoogle Scholar
  34. 34.
    V. A. Solonnikov and Shchadilov, “On a boundary problem for a stationary system of Navier-Stokes equations,”Proc. Steklov Inst. Math.,125, 186–199 (1973).Google Scholar
  35. 35.
    V. A. Solonnikov, “On the solvability of a problem on the plane motion of a heavy viscous incompressible capillary liquid partially filling a container,”Izv. Akad. Nauk SSSR, Ser. Mat.,43, 201–236 (1979).MathSciNetGoogle Scholar
  36. 36.
    V. A. Solonnikov, “Solvability of the problem of evolution of an isolated volume of viscous incompressible capillary fluid,”Zap. Nauchn. Semin. LOMI,140, 179–186 (1984).MATHMathSciNetGoogle Scholar
  37. 37.
    R. Temam, “Une méthode d'approximation de la solution des équations de Navier-Stokes,”Bull. Soc. Math. France,6, 115–152 (1968).MathSciNetGoogle Scholar
  38. 38.
    R. Temam, “Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires, I et II,”Arch. Rat. Mech. Anal.,32, 135–153 (1965);33, 377–385 (1969).MathSciNetGoogle Scholar
  39. 39.
    R. Temam,Navier-Stokes Equations. Theory and Numerical Analysis, 3rd ed. Amsterdam (1984).Google Scholar
  40. 40.
    N. N. Yanenko,Method of Fractional Steps for Solution of Many-Dimensional Problems of Mathematical Physics [in Russian], Novosibirsk (1966).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • A. A. Kotsiolis
  • A. P. Oskolkov

There are no affiliations available

Personalised recommendations