Journal of Mathematical Sciences

, Volume 82, Issue 5, pp 3672–3679 | Cite as

Umbilical characteristic number of Lagrangian mappings of a 3-dimensional pseudooptical manifold

  • M. E. Kazarian
Article
  • 27 Downloads

Keywords

Manifold Lagrangian Mapping Characteristic Number 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    V.I. Arnold, “Sur les propriétés topologiques des projections lagrangiennes en géometrie symplectique des caustiques,” Cahier de Mathématiques de la decision, CEREMADE,9320, 1–9 (1993).Google Scholar
  2. 2.
    V.I. Arnold and A.V. Givental, “Symplectic geometry,” In:Encyclopedia of Math. Sciences, Dynamical Systems. Vol. 4, Springer (1990), pp. 4–136.Google Scholar
  3. 3.
    Yu. V. Chekanov, “Caustics in geometrical optics,”Funct. Anal. Appl.,20, 223–226 (1986).CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    G. Darboux,Lecons sur la Théorie Générale des Surfaces,4, Gauthiers-Villars, Paris (1986).Google Scholar
  5. 5.
    D.V. Fuchs “The Maslov-Arnold characteristic classes,”Sov. Math. Dokl.,9, 96–99 (1968).Google Scholar
  6. 6.
    I.R. Porteous, “The normal singularities of surfaces in ℝ3,”Proc. Symp. Pure Math.,40 (Part 2), 3479–3493 (1983).Google Scholar
  7. 7.
    I.R. Porteous,Geometric Differentiation, Cambridge University Press (1994).Google Scholar
  8. 8.
    V.A. Vasilyev,Lagrange and Legendre Characteristic Classes, Gordon and Breach (1988).Google Scholar
  9. 9.
    V.M. Zakalyukin, “Rearrangements of fronts and caustics depending on parameters, and versality,” In:Sovremennye Problemy Matematiki. Vol. 20,Itogi Nauki i Tekhn., All-Union Institute for Scientific and Technical Information (VINITI), Akad. Nauk SSSR, Moscow (1983), pp. 56–93.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • M. E. Kazarian

There are no affiliations available

Personalised recommendations