Journal of Mathematical Sciences

, Volume 81, Issue 3, pp 2738–2743 | Cite as

A remark on discriminants of moduli ofK3 surfaces as sets of zeros of automorphic forms



Automorphic Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Borchers, “Generalized Kac-Moody algebras,”J. Algebra,115, 501–512 (1988).MathSciNetGoogle Scholar
  2. 2.
    R. Borcherds, “Automorphic forms onO s+2,2(R) and infinite products,”Invent. Math.,120, 161–213 (1995).CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    R. Borcherds,The moduli space of Enriques surfaces and the fake monster Lie superalgebra, preprint (1994).Google Scholar
  4. 4.
    A. Borel and G. D. Mostow, “Algebraic groups and discontinuous subgroups,” In:Proc. Symp. Pure Math., Vol. IX, Amer. Math. Soc. (1966).Google Scholar
  5. 5.
    D. Burns and M. Rapoport, “On the Torelli problem for KählerianK3 surfaces,”Ann. Sci. Ecole Norm. Sup., Sér. 48, No. 2, 235–274 (1975).MathSciNetGoogle Scholar
  6. 6.
    I. V. Dolgachev, “Integral quadratic forms: applications to algebraic geometry (after V. Nikulin),” In:Sem. Bourbaki, 1982/83, No. 611;Astérisque,105/106, 251–275.Google Scholar
  7. 7.
    I. V. Dolgachev,Mirror symmetry for lattice polarized K3-surfaces, Duke e-prints, alg-geom/9502005 (1995).Google Scholar
  8. 8.
    I. V. Dolgachev and V. V. Nikulin, “The exceptional singularities of V. I. Arnold andK3 surfaces” [in Russian], In:Seventh All-Union Topology Conf. (Minsk, 1977),Abstracts of Lectures and Communications, Inst. Mat. Akad. Nauk BSSR, Minsk (1977).Google Scholar
  9. 9.
    V. A. Gritsenko, “Jacobi functions inn-variables,”Zap. Nauk. Sem. LOMI,168, 32–45 (1988); English transl. inJ. Sov. Math.,53, 243–252 (1991).Google Scholar
  10. 10.
    V. A. Gritsenko, “Modular forms and moduli spaces of abelian andK3 surfaces,” In:Mathematica Gottingensis Schrift. des SFB “Geometrie und Analysis”, Heft 26 (1993), pp. 1–32;St. Petersburg Math. J.,6:6, 65–102 (1994).Google Scholar
  11. 11.
    V. A. Gritsenko, “Irrationality of the moduli spaces of polarized abelian surfaces,”The International Mathematics Research Notices,6, 235–243 (1994); in full form inAbelian Varieties. Proc. of the Egloffstein conference, de Gruyter, Berlin 63–81 (1995).zbMATHMathSciNetGoogle Scholar
  12. 12.
    V. A. Gritsenko, “Modulformen zur Paramodulgruppe und Modulräume der Abelschen Varietäten,” In:Mathematica Gottingensis Schrift. des SFB “Geometrie und Analysis”, Heft 12 (1995), pp. 1–89.Google Scholar
  13. 13.
    V. A. Gritsenko and V. V. Nikulin, “Siegel automorphic form correction of a Lorentzian Kac-Moody algebra,”C. R. Acad. Sci. Paris, Sér. A-B,321, 1151–1156 (1995).MathSciNetGoogle Scholar
  14. 14.
    V. A. Gritsenko and V. V. Nikulin,Siegel automorphic form correction of some Lorentzian Kac-Moody Lie algebras, Duke e-prints alg-geom/9504006 (1995), to appear inAmer. J. Math. Google Scholar
  15. 15.
    V. A. Gritsenko and V. V. Nikulin,K3surfaces, Lorentzian Kac-Moody algebras and mirror symmetry, Duke e-prints, alg-geom/9510008 (1995), to appear inMath. Res. Lett. Google Scholar
  16. 16.
    J. A. Harvey and G. Moore,Algebras, BPS states, and strings, YCTP-P16-95, EFI-95-64, hep-th/9510182.Google Scholar
  17. 17.
    V. Kac,Infinite Dimensional Lie Algebras, Cambridge Univ. Press (1990).Google Scholar
  18. 18.
    T. Kawai,N=2Heterotic string threshold correction, K3surfaces and generalized Kac-Moody algebras, INS-Rep-1128, hep-th/9512046.Google Scholar
  19. 19.
    Vic. S. Kulikov, “Degenerations ofK3 surfaces and Enriques surfaces,”Izv. Akad. Nauk SSSR. Ser. Mat.,41, 1008–1042 (1977); English transl. inMath. USSR Izv.,11 (1977).zbMATHMathSciNetGoogle Scholar
  20. 20.
    V. V. Nikulin, “Finite automorphism groups of KählerK3 surfaces,” In:Tr. Mosk. Mat. Obshch., Vol. 37 (1979), pp. 73–137; English transl. inTrans. Moscow Math. Soc.,38, No. 2 (1980).Google Scholar
  21. 21.
    V. V. Nikulin, “Integral symmetric bilinear forms and some of their geometric applications”Izv. Akad. Nauk SSSR. Ser. Mat.,43, 111–177 (1979); English transl. inMath. USSR Izv.,14 (1980).zbMATHMathSciNetGoogle Scholar
  22. 22.
    V. V. Nikulin, “On the quotient groups of the automorphism groups of hyperbolic forms by the subgroups generated by 2-reflections, Algebraic-geometric applications,” In:Sovremennye Problemy Matematiki. Itogi Nauki i Tekhn., All-Union Institute for Scientific and Technical Information (VINITI), Moscow (1981), pp. 3–114; English transl. inJ. Sov. Math.,22, 1401–1476 (1983).Google Scholar
  23. 23.
    V. V. Nikulin, “On arithmetic groups generated by reflections in Lobachevsky spaces,”Izv. Akad. Nauk SSSR. Ser. Mat.,44, 637–669 (1980); English transl. inMath. USSR Izv.,16 (1981).zbMATHMathSciNetGoogle Scholar
  24. 24.
    V. V. Nikulin, “On the classification of arithmetic groups generated by reflections in Lobachevsky spaces,”Izv. Akad. Nauk SSSR. Ser. Mat.,45, No. 1, 113–142 (1981); English transl. inMath. USSR Izv.,18 (1982).zbMATHMathSciNetGoogle Scholar
  25. 25.
    V. V. Nikulin, “Involutions of integral quadratic forms and their applications to real algebraic geometry,”Izv. Akad. Nauk SSSR. Ser. Mat.,47, No. 1, 109–188 (1983); English transl. inMath. USSR Izv.,22 (1984).MathSciNetGoogle Scholar
  26. 26.
    V. V. Nikulin, “Surfaces of typeK3 with finite automorphism group and Picard group of rank three,” In:Tr. Mat. Inst. Sov. Akad. Nauk, Vol. 165 (1984), pp. 113–142; English transl. inProc. Steklov Math. Inst., Vol. 3 (1985).Google Scholar
  27. 27.
    V. V. Nikulin, “Discrete reflection groups in Lobachevsky spaces and algebraic surfaces,” In:Proc. Int. Congr. Math. Berkeley, Vol. 1 (1986), pp. 654–669.Google Scholar
  28. 28.
    V. V. Nikulin,A lecture on Kac-Moody Lie algebras of the arithmetic type, preprint Queen's University, Canada #1994-16 (1994); Duke e-prints alg-geom/9412003.Google Scholar
  29. 29.
    V. V. Nikulin,Reflection groups in hyperbolic spaces and the denominator formula for Lorentzian Kac-Moody Lie algebras, Duke e-prints alg-geom/9503003 (1995); to appear inIzv. Rossiisk. Akad. Nauk. Ser. Mat. Google Scholar
  30. 30.
    V. V. Nikulin,A remark on discriminants of moduli of K3surfaces as sets of zeros of automorphic forms, Duke e-prints alg-geom/9512018 (1995).Google Scholar
  31. 31.
    H. C. Pinkham, “Singularités exceptionnelles, la dualité étrange d'Arnold et les surfacesK3,”C. R. Acad. Sci. Paris Sér. A-B,284, A615-A618 (1977).MathSciNetGoogle Scholar
  32. 32.
    I. I. Pjatetckiî-Šapiro and I. R. Šafarevich, “A Torelli theorem for algebraic surfaces of typeK3,”Izv. Akad. Nauk SSSR. Ser. Mat.,35, 530–572 (1971); English transl. inMath. USSR Izv.,5 (1971).MathSciNetGoogle Scholar
  33. 33.
    I. R. Šafarevich (ed.), “Algebraic surfaces,” In:Tr. Mat. Inst. Sov. Akad. Nauk, Vol. 75 (1965); English transl. inProc. Steklov Math. Inst., Vol. 75 (1965).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Personalised recommendations