References
V. Arnold, “Critical points of smooth functions”, In:Proc. I.C.M., Vancouver (1974), pp. 18–39.
P. Aspinwall and D. Morrison,String theory on K3 surfaces, preprint IASSNS-hep-94/23 (1994).
P. Aspinwall and D. Morrison,Mirror symmetry and the moduli space of K3 surfaces, to appear.
W. Barth, C. Peters, and A. Van de Ven,Compact Complex Surfaces, Ergenbnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Band 4, Springer-Verlag (1984).
V. Batyrev, “Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties”,J. Alg. Geom.,3, 493–535 (1994).
C. Borcea,K3 surfaces with involution and mirror pairs of Calabi-Yau manifolds, preprint Rider College.
F. Cossec and I. Dolgachev,Enriques surfaces I, Birkhäuser (1989).
I. Dolgachev and V. Nikulin, “Exceptional singularities of V. I. Arnold andK3 surfaces”, In:Proc. USSR Topological Conference, Minsk (1977).
I. Dolgachev, “Integral quadratic forms: applications to algebraic geometry”, In:Sem. Bourbaki, 1982/83, No. 611;Asterisque,105/106, Soc. Math. France, 251–275.
I. Dolgachev, “On algebraic properties of algebras of automorphic forms”, In:Modular Functions in Analysis and Number Theory, Lect. Notes Math. Stat., Vol. 5, Univ. Pittsburgh (1983), pp. 21–29.
Essays on Mirror Symmetry (ed. S.-T. Yau) Int. Press Co., Hong Kong (1992).
R. Fricke,Lehrbuch der Algebra, B. 3, Braunschweig (1928).
“Géometrie des surfaces K3: modules et périodes”, Astérisque,126, Soc. Math. France (1985).
A. Giveon and D.-J. Smit, “Symmetries of the moduli space of (2,2) superstring vacua”,Nucl. Phys. B,349, 168–206 (1991).
Ph. Griffiths, “Periods of integrals on algebraic manifolds, I, II”Amer. J. Math.,90, 568–626, 805–865 (1968).
Ph. Griffiths and L. Tu, “Infinitesimal variation of Hodge structure”, In:Topics in Transcendental Algebraic Geometry, Ann. Math. Studies, Vol. 106, Princeton University Press (1984).
D. James, “On Witt's theorem for unimodular quadratic forms”,Pac. J. Math.,26:2, 303–316 (1968).
P. G. Kluit, “On the normalizer of Γ0(n)”, In:Modular Functions of One Variable, V, Lect. Notes Math., Vol. 601, Springer (1977), pp. 239–246.
M. Kobayashi,Duality of weights, mirror symmetry and Arnold's strange duality, preprint (1994).
J. Lehner and W. Newman, “Weierstrass, points of Γ0(n)”,Ann. Math.,79, 360–368 (1964).
B. Lian and S.-T. Yau,Arithmetic properties of mirror map and quantum coupling, preprint hep-th (1994).
B. Lian and S.-T. Yau,Mirror maps, modular relations and hypergeometric series II, preprint hep-th (1994).
E. Martinec, “Criticality, catastrophes, and compactifications”, In:Physics and Mathematics of Strings, World Scientific (1990), pp. 389–433.
J. Milnor, “On the 3-dimensional Brieskorn manifolds”, In:Knots, Groups and 3-Manifolds, Ann. Math. Stud., Vol. 84, Princeton Univ. Press (1975), pp. 175–224.
D. Morrison, “OnK3 surfaces with large Picard number”,Invent. Math.,75, 105–121 (1984).
D. Morrison, “Mirror symmetry and rational curves on quintic 3-folds: A guide for mathematicians”,J. Amer. Math. Soc.,6, 223–247 (1993).
M. Nagura and K. Sugiyama, “Mirror symmetry of theK3 surface”,Int. J. Mod. Phys. A,10, No. 2, 233–252 (1995).
Y. Namikawa, “Periods of Enriques surfaces”,Math. Ann.,270, 201–222 (1985).
W. Neumann, “Abelian covers of quasihomogeneous singularities”, In:Singularities, Proc. Symp. Pure Math., Vol. 40, Part 2, A.M.S., Providence (1983), pp. 233–243.
V. Nikulin, “Finite groups of automorphisms of KählerK3 surfaces”, In:Tr. Mosk. Mat. Obshch., Vol. 38 (1980), pp. 71–135.
V. Nikulin, “Integral quadratic forms and some of its geometric applications”,Izv. Akad. Nauk SSSR. Ser. Mat.,43, 103–167 (1979).
V. Nikulin, “On rational maps between K3 surfaces”, In:Constantin Caratheodory: An International Tribute, Vol. I, II, World Sci. Publ. (1991), pp. 964–995.
C. Peters and J. Stienstra, “A pencil ofK3 surfaces related to Apéry's recurrence for ζ(3) and Fermi surfaces for potential zero”, In:Arithmetics of Complex Manifolds, Lect. Notes Math., Vol. 1399, Springer-Verlag (1989).
H. Pinkham, “Singularités exceptionnelles, la dualité étrange d'Arnold et les surfacesK3”,C. R. Acad. Sci. Paris, Ser. A-B,284, 615–618 (1977).
S.-S. Roan,Mirror symmetry and Arnold's duality, preprint MPI (1993).
Y. Ruan and G. Tian, “A mathematical theory of quantum cohomology”,Math. Res. Lett.,1, No. 2, 269–278 (1994).
F. Scattone, “On the compactification of moduli spaces for algebraicK3 surfaces”,Mem. A.M.S.,70, No. 374 (1987).
G. Shimura,Introduction to the Arithmetic Theory of Automorphic Functions, Vol. 11, Publ. Math. Soc. Japan (1971).
H. Sterk, “Lattices andK3 surfaces of degree 6”,Lin. Alg. Appl., 226–228, 297–309 (1995).
A. Todorov,Some ideas from mirror geometry applied to the moduli space of K3, preprint.
C. Voisin, “Miroirs et involutions sur les surfacesK3”, In:Journées de Géométrie Algébrique d'Orsay, Vol. 218;Astérisque, Soc. Math. France, 273–323 (1993).
T. Yonemura, “Hypersurface simpleK3 singularities”,Tôhoku Math. J.,42, 351–380 (1990).
Additional information
Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory. Vol. 33, Algebraic Geometry-4, 1996.
Rights and permissions
About this article
Cite this article
Dolgachev, I.V. Mirror symmetry for lattice polarizedK3 surfaces. J Math Sci 81, 2599–2630 (1996). https://doi.org/10.1007/BF02362332
Issue Date:
DOI: https://doi.org/10.1007/BF02362332