Skip to main content
Log in

Mirror symmetry for lattice polarizedK3 surfaces

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. V. Arnold, “Critical points of smooth functions”, In:Proc. I.C.M., Vancouver (1974), pp. 18–39.

  2. P. Aspinwall and D. Morrison,String theory on K3 surfaces, preprint IASSNS-hep-94/23 (1994).

  3. P. Aspinwall and D. Morrison,Mirror symmetry and the moduli space of K3 surfaces, to appear.

  4. W. Barth, C. Peters, and A. Van de Ven,Compact Complex Surfaces, Ergenbnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Band 4, Springer-Verlag (1984).

  5. V. Batyrev, “Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties”,J. Alg. Geom.,3, 493–535 (1994).

    MATH  MathSciNet  Google Scholar 

  6. C. Borcea,K3 surfaces with involution and mirror pairs of Calabi-Yau manifolds, preprint Rider College.

  7. F. Cossec and I. Dolgachev,Enriques surfaces I, Birkhäuser (1989).

  8. I. Dolgachev and V. Nikulin, “Exceptional singularities of V. I. Arnold andK3 surfaces”, In:Proc. USSR Topological Conference, Minsk (1977).

  9. I. Dolgachev, “Integral quadratic forms: applications to algebraic geometry”, In:Sem. Bourbaki, 1982/83, No. 611;Asterisque,105/106, Soc. Math. France, 251–275.

  10. I. Dolgachev, “On algebraic properties of algebras of automorphic forms”, In:Modular Functions in Analysis and Number Theory, Lect. Notes Math. Stat., Vol. 5, Univ. Pittsburgh (1983), pp. 21–29.

  11. Essays on Mirror Symmetry (ed. S.-T. Yau) Int. Press Co., Hong Kong (1992).

    Google Scholar 

  12. R. Fricke,Lehrbuch der Algebra, B. 3, Braunschweig (1928).

  13. Géometrie des surfaces K3: modules et périodes”, Astérisque,126, Soc. Math. France (1985).

  14. A. Giveon and D.-J. Smit, “Symmetries of the moduli space of (2,2) superstring vacua”,Nucl. Phys. B,349, 168–206 (1991).

    Article  MathSciNet  Google Scholar 

  15. Ph. Griffiths, “Periods of integrals on algebraic manifolds, I, II”Amer. J. Math.,90, 568–626, 805–865 (1968).

    MATH  MathSciNet  Google Scholar 

  16. Ph. Griffiths and L. Tu, “Infinitesimal variation of Hodge structure”, In:Topics in Transcendental Algebraic Geometry, Ann. Math. Studies, Vol. 106, Princeton University Press (1984).

  17. D. James, “On Witt's theorem for unimodular quadratic forms”,Pac. J. Math.,26:2, 303–316 (1968).

    MATH  Google Scholar 

  18. P. G. Kluit, “On the normalizer of Γ0(n)”, In:Modular Functions of One Variable, V, Lect. Notes Math., Vol. 601, Springer (1977), pp. 239–246.

  19. M. Kobayashi,Duality of weights, mirror symmetry and Arnold's strange duality, preprint (1994).

  20. J. Lehner and W. Newman, “Weierstrass, points of Γ0(n)”,Ann. Math.,79, 360–368 (1964).

    MathSciNet  Google Scholar 

  21. B. Lian and S.-T. Yau,Arithmetic properties of mirror map and quantum coupling, preprint hep-th (1994).

  22. B. Lian and S.-T. Yau,Mirror maps, modular relations and hypergeometric series II, preprint hep-th (1994).

  23. E. Martinec, “Criticality, catastrophes, and compactifications”, In:Physics and Mathematics of Strings, World Scientific (1990), pp. 389–433.

  24. J. Milnor, “On the 3-dimensional Brieskorn manifolds”, In:Knots, Groups and 3-Manifolds, Ann. Math. Stud., Vol. 84, Princeton Univ. Press (1975), pp. 175–224.

  25. D. Morrison, “OnK3 surfaces with large Picard number”,Invent. Math.,75, 105–121 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  26. D. Morrison, “Mirror symmetry and rational curves on quintic 3-folds: A guide for mathematicians”,J. Amer. Math. Soc.,6, 223–247 (1993).

    MATH  MathSciNet  Google Scholar 

  27. M. Nagura and K. Sugiyama, “Mirror symmetry of theK3 surface”,Int. J. Mod. Phys. A,10, No. 2, 233–252 (1995).

    MathSciNet  Google Scholar 

  28. Y. Namikawa, “Periods of Enriques surfaces”,Math. Ann.,270, 201–222 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  29. W. Neumann, “Abelian covers of quasihomogeneous singularities”, In:Singularities, Proc. Symp. Pure Math., Vol. 40, Part 2, A.M.S., Providence (1983), pp. 233–243.

    Google Scholar 

  30. V. Nikulin, “Finite groups of automorphisms of KählerK3 surfaces”, In:Tr. Mosk. Mat. Obshch., Vol. 38 (1980), pp. 71–135.

  31. V. Nikulin, “Integral quadratic forms and some of its geometric applications”,Izv. Akad. Nauk SSSR. Ser. Mat.,43, 103–167 (1979).

    MathSciNet  Google Scholar 

  32. V. Nikulin, “On rational maps between K3 surfaces”, In:Constantin Caratheodory: An International Tribute, Vol. I, II, World Sci. Publ. (1991), pp. 964–995.

  33. C. Peters and J. Stienstra, “A pencil ofK3 surfaces related to Apéry's recurrence for ζ(3) and Fermi surfaces for potential zero”, In:Arithmetics of Complex Manifolds, Lect. Notes Math., Vol. 1399, Springer-Verlag (1989).

  34. H. Pinkham, “Singularités exceptionnelles, la dualité étrange d'Arnold et les surfacesK3”,C. R. Acad. Sci. Paris, Ser. A-B,284, 615–618 (1977).

    MATH  MathSciNet  Google Scholar 

  35. S.-S. Roan,Mirror symmetry and Arnold's duality, preprint MPI (1993).

  36. Y. Ruan and G. Tian, “A mathematical theory of quantum cohomology”,Math. Res. Lett.,1, No. 2, 269–278 (1994).

    MathSciNet  Google Scholar 

  37. F. Scattone, “On the compactification of moduli spaces for algebraicK3 surfaces”,Mem. A.M.S.,70, No. 374 (1987).

    Google Scholar 

  38. G. Shimura,Introduction to the Arithmetic Theory of Automorphic Functions, Vol. 11, Publ. Math. Soc. Japan (1971).

  39. H. Sterk, “Lattices andK3 surfaces of degree 6”,Lin. Alg. Appl., 226–228, 297–309 (1995).

    Google Scholar 

  40. A. Todorov,Some ideas from mirror geometry applied to the moduli space of K3, preprint.

  41. C. Voisin, “Miroirs et involutions sur les surfacesK3”, In:Journées de Géométrie Algébrique d'Orsay, Vol. 218;Astérisque, Soc. Math. France, 273–323 (1993).

  42. T. Yonemura, “Hypersurface simpleK3 singularities”,Tôhoku Math. J.,42, 351–380 (1990).

    MATH  MathSciNet  Google Scholar 

Download references

Authors

Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory. Vol. 33, Algebraic Geometry-4, 1996.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dolgachev, I.V. Mirror symmetry for lattice polarizedK3 surfaces. J Math Sci 81, 2599–2630 (1996). https://doi.org/10.1007/BF02362332

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02362332

Keywords

Navigation