Neuroscience and Behavioral Physiology

, Volume 24, Issue 3, pp 284–288 | Cite as

The role of dopaminergic mechanisms of the brain in various models of anxious states

  • A. N. Talalaenko
  • I. A. Abramets
  • Yu. V. Stakhovskii
  • A. A. Shekhovtsov
  • A. V. Chernikov
  • S. L. Shevchenko


In tests of “illuminated area” and the “threatening situation” avoidance by rats, apomorphine and phenamine, administered intraperitoneally, attenuate the state of alarm. A similar effect is observed when sulpiride, a selective blocker of D2-receptors of dopamine, and of picrotoxin, a GABA antagonist, are administered. Sulpiride effectively counteracts the anxiolytic effects of all of the dopaminomimetics investigated and of picrotoxin. Haloperidol, a nonselective blocker of the D1-and D2-receptors of dopamine removes the anxiolytic effect of apomorphine, phenamine, and picrotoxin. The microinjection into the ventral region of the midbrain tegmentum of dopamine, or of sulpiride into the nucleus accumbens of the septum, attenuates the state of alarm formed by aversive influences of various biological modalities. By contrast, sulpiride, introduced locally into the tegmentum, or chemical stimulation of the nucleus accumbens of the septum by dopamine, intensifies the state of alarm in the “illuminated area” avoidance test. The participation of dopaminergic mechanisms of the mesolimbic system of the brain in anxiety of various aversive causations is discussed.


Dopamine Haloperidol Nucleus Accumbens Apomorphine Anxious State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ya. Buresh, M. Petran', and I. Zakhar, Electrophysiological Research Methods [Russian translation], Moscow (1962).Google Scholar
  2. 2.
    A. N. Talalaenko, G. K. Krivobok, A. V. Chenikov, et al., “The monoamine-and acidergic mechanisms of the raphé nuclei in various tests of anxiety”, Fiziol. Zhurn. SSSR, 77, No. 2, 119–123 (1991).Google Scholar
  3. 3.
    G. Bignami, “Pharmacology and anxiety: inadequacies of current experimental approaches and working models”, Pharmacol. Biochem. Behav., 29, No. 4, 771–774 (1988).PubMedGoogle Scholar
  4. 4.
    B. S. Bunney, G. K. Aghajanjan, and R. H. Roth, “Comparison of effect of L-DOPA, amphetamine and apomorphine on firing rate of rat dopaminergic neurons”, Nature, 245, No. 4865, 123–125 (1973).Google Scholar
  5. 5.
    M. H. Chauchrd, “Psychopharmacology du dogmatil”, Sem. Hop. Paris, 61, No. 30, 2186–2190 (1985).Google Scholar
  6. 6.
    J. Glowinski, J. P. Tassin, and M. H. Thierry, “The mesocorticoprefrontal dopaminergic neurons”, Trends Neurosci. 7: No. 11, 415–418 (1984).Google Scholar
  7. 7.
    P. M. Groves, C. J. Wilson, and S. J. Yong, “Self-inhibition by dopaminergic neurons”, Science, 190, No. 4188, 522–529 (1975).PubMedGoogle Scholar
  8. 8.
    T. Hand, Hu Xiu-Ti, and R. Wang, “Differential effects of acute closapine and haloperidol on the activity of ventral tegmental (A10) and nigrostriatal (A9) dopamine”, Brain Res., 415, No. 2, 257–269 (1987).PubMedGoogle Scholar
  9. 9.
    S. Hjorth, A. Carlsson, and J. Engel, “Anxiolytic-like action of the 3-PPP enantiomers in the Vogel conflict paradigm,” Psychopharmacology, 92, No. 3, 371–375 (1987).PubMedGoogle Scholar
  10. 10.
    C. Le Douarin, J. Penit, J. Glowinski, and A. M. Thierry, “Effects of ventromedial mesencephalic tegmentum (VMT) stimulation on the spontaneous activity of nucleus accumbens neurons: influence of the dopamine system”, Brain Res., 363, No. 2, 290–298 (1986).PubMedGoogle Scholar
  11. 11.
    R. Redolat, P. Brain, and V. Simon, “Investigation of the anxiolytic properties of the neuroleptic sulpiride using the agonistic responses of female mice,” Aggress. Behav., 15, No. 1, 109 (1989).Google Scholar
  12. 12.
    W. Reinmann, A. Zumstein, and G. Hertling, “Inhibition of dopamine release from rabbit nucleus caudatus by apomorphine and bromcriptine,” Naunyn Schmiedeberg's Arch. Pharmacol., 302, Suppl. S, 50 (1978).Google Scholar
  13. 13.
    G. S. Roberts and A. H. Roberts, “D1 and D2 dopamine agonists synergism. Separate sites of action,” Trends Pharmacol. Sci., 8, 295–299 (1987).Google Scholar
  14. 14.
    P. Seeman, “Brain dopamine receptors”, Pharmacol. Rev., 32, No. 3, 229–313 (1980).PubMedGoogle Scholar
  15. 15.
    R. A. Shephard, “Behavioral effects of GABA agonists in relation to anxiety and benzodiazepine action,” Life Sci., 40, No. 25 2429–2436 (1987).PubMedGoogle Scholar
  16. 16.
    T. S. Shippenberg, R. Bals-Kubik, A. Hubert, and A. Herz, “Neuroanatomical substrates mediating the aversive effects of D-1 dopamine receptors antagonists,” Psychopharmacology, 103, No. 2, 209–214 (1991).PubMedGoogle Scholar
  17. 17.
    N. L. Silva and B. S. Bunney, “Intracellular studies of dopamine in vitro: pacemakers modulated by dopamine,” Eur. J. Pharmacol., 149, No. 3, 307–315 (1988).PubMedGoogle Scholar
  18. 18.
    B. L. Waszczak and J. Walters, “Intravenous GABA agonist administration stimulates firing of A10 dopaminergic neurons,” Eur. J. Pharmacol., 66, No. 1, 141–144 (1980).PubMedGoogle Scholar
  19. 19.
    P. Westerling, S. Lindgren and U. Huglund, “Dopamine mediated behavior and GABA influence,” Pharmacol. Biochem. and Behav., 31, No. 3, 593–596 (1988).Google Scholar
  20. 20.
    L. Wilkinson, E. Abercrombie, K. Rasmussen, and B. Jacobs, “Effects of buspirone on single unit activity in locus coeruleus and dorsal raphé nucleus in behaving cats,” Eur. J. Pharmacol., 136, No. 1, 123–127 (1987).PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • A. N. Talalaenko
    • 1
  • I. A. Abramets
    • 1
  • Yu. V. Stakhovskii
    • 1
  • A. A. Shekhovtsov
    • 1
  • A. V. Chernikov
    • 1
  • S. L. Shevchenko
    • 1
  1. 1.Department of PharmacologyM. Gor'kii State Medical InstituteDonetsk

Personalised recommendations