The Italian Journal of Neurological Sciences

, Volume 8, Issue 1, pp 23–28 | Cite as

Does delay in acquiring childhood infection increase risk of multiple sclerosis?

  • Alter M. 
  • Zhen-xin Z. 
  • Davanipour Z. 
  • Sobel E. 
  • Min Lai S. 
  • LaRue L. 


Multiple sclerosis (MS) appears to be more common in technically advanced countries than in underdeveloped regions and migration from one area to an-other at a young age affects the risk of acquiring MS. One way of explaining both the peculiar frequency distribution and the effect of migration while young is to postulate that an infection early in life decreases the chance of central demyelination. However, no specific infection has been implicated consistently. Alternatively, an aberrant host response to infection in childhood might induce central demyelination. Thus, the aberrant host response could be age-dependent. In seeking associations between age of infection and risk of MS, we observed a direct relationship: where childhood diseases were acquired early in life, the frequency of MS in that population was low; where childhood diseases tended to occur nearer adolescence, MS frequency in that population was high. Since immune responsiveness to antigenic challenges matures through early adolescence, we reason that early infection might be protective and delay in acquiring childhood infections might increase the risk of developing MS. Indeed, in experimental models, the chance of inducing chronic relapsing central demyelination is increased by using adolescent rather than newborn or mature animals. In this paper, epidemiologic evidence showing the strong association between age of infection and risk of MS is presented.


Multiple sclerosis infection immune response age epidemiology 


La sclerosi a placche è più frequente nei paesi industrializzati che in quelli sottosviluppati, e la migrazione da un'area all'altra in età giovanile modifica il rischio di ammalare. Per spiegare la particolare distribuzione di frequenza della malattia e l'effetto della migrazione, è necessario postulare che un'infezione in età infantile diminuisca il rischio di malattia demielinizzante del sistema nervoso centrale; tuttavia nessuna infezione specifica è stata dimostrata con certezza.

Un'altra spiegazione potrebbe essere che la malattia demielinizzante è favorita da una risposta anormale a un'infezione contratta nella fanciullezza. La risposta anormale dell'ospite all'infezione potrebbe essere legata all'età. Valutando le possibilità di associazioni fra età di infezione e rischio di sclerosi a placche, abbiamo osservato una relazione diretta: nelle popolazioni in cui le malattie infettive erano contratte precocemente, la frequenza di sclerosi multipla era bassa, nelle popolazioni in cui le malattie infettive avevano una tendenza a manifestarsi verso l'adolescenza la frequenza di sclerosi multipla era elevata.

Siccome la risposta immunitaria alle sollecitazioni antigeniche matura nel corso della prima parte dell'adolescenza, si può ipotizzare che un'infezione precoce possa proteggere dalla sclerosi a placche, mentre un ritardo nel contrarre le malattie infettive dell'infanzia può aumentare il rischio di sviluppare la sclerosi a placche. Nell'animale da esperimento, la possibilità di indurre una malattia demielinizzante ricorrente e cronica del sistema nervoso centrale è favorita dall'uso di animali giovani, mentre si riduce utilizzando animali neonati o animali adulti.

Questo lavoro illustra le prove epidemiologiche dell'associazione fra età di infezione e rischio di sclerosi a placche.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Kurtzke J.F.:Epidemiologic contibutions to multiple sclerosis: An overview. Neurology 30:61–79, 1980.PubMedGoogle Scholar
  2. [2]
    Alter M., Leibowitz U., Speer J.:Risk of multiple sclerosis related to age at immigration to Israel. Arch. Neurol., 15:234–240, 1966.PubMedGoogle Scholar
  3. [3]
    Dean G., Kurtzke J.F.:On the risk of multiple sclerosis according to age at immigration to South Africa. Br Med J 3:725–729, 1971.PubMedGoogle Scholar
  4. [4]
    Kurtzke J.F., Beebe G.W., Norman J.E.:Epidemiology of multiple sclerosis in U.S. veterans: III migration and the risk of M.S. Neurology 35: 672–678, 1985.PubMedGoogle Scholar
  5. [5]
    Alter M.:Multiple sclerosis in migrant populations. Triangle 12:25–30, 1973.PubMedGoogle Scholar
  6. [6]
    Alter M., Kahana E., Loewenson R.:Migration and risk of multiple sclerosis. Neurology 28:1089–1093, 1978.PubMedGoogle Scholar
  7. [7]
    Dean G., McLoughlin G., Brady R., Adelstein A.M., Tallett-Williams J.:Multiple sclerosis among immigrants in Greate London. Br. Med. J., 1:861–864, 1976.PubMedGoogle Scholar
  8. [8]
    Alter M.:Is multiple sclerosis an age-dependent host response to measles? Lancet 1:456–457, 1976.PubMedGoogle Scholar
  9. [9]
    World Health Statistics Annual (Vol. 1).The World Health Organization, Geneva 1981–1982.Google Scholar
  10. [10]
    World Health Statistics Annual (Vol 2):The World Health Organization, Geneva 1981–1982.Google Scholar
  11. [11]
    Dean G., Kurtzke J.F.:On the risk of multiple sclerosis according to age at immigration to South Africa. Br. Med. J. 3:725–729, 1971.PubMedGoogle Scholar
  12. [12]
    Black F.L.:Measles In: Evans AS (ed). Viral Infections of Humans: Epidemiology and Control. New York and London. Plenum Medical Book Company, p. 404, 1985.Google Scholar
  13. [13]
    Terzin A.L., Masic M.G.:Age-specific incidence of neutralization antibodies of herpes simplex virus. J. Hyg Camb 77:155–160, 1976.PubMedGoogle Scholar
  14. [14]
    Wentworth B.B., Alexander E.R.:Seroepidemiology of infections due to members of the herpes virus group. Am. J. Epidemiol 94:496–507, 1971.PubMedGoogle Scholar
  15. [15]
    Gold E., Nankervis G.A.:Cytomegalovirus. In: Evans A.S. (ed). Viral Infections of Humans: Epidemiology and Control. New York and London. Plenum Medical Book Company, p. 171, 1984.Google Scholar
  16. [16]
    Hall C.E., Brandt C.D., Frothingham T.E., Spigland I.:The virus watch program: A continuing surveillance of viral infections in metropolitan New York families. Am J. Epidemiol 94:367–385, 1971.PubMedGoogle Scholar
  17. [17]
    Maynard J.E., Feltz E.T., Wulfft H., Fortuine R., Poland D.J.D., Chin T.D.Y.:Surveillance of respiratory virus infections among Alaskan Eskimo children. JAMA 200:927–931, 1976.Google Scholar
  18. [18]
    Evans A.S.:New discoveries in infectous mononucleosis. Mod. Med. 1:18–24, 1974.Google Scholar
  19. [19]
    Horstmann DM:Rubella. In: Evans A.S. (ed). Viral Infections of Humans: Epidemiology and Control. New York and London. Plenum Medical Book Company p. 525, 1984.Google Scholar
  20. [20]
    Brown P., Breuguet G., Smallwood L., Ney R., Moerdowo R.M., Gerety R.J.:Serologic markers of hepatitis A and B in the population of Bali, Indonesia. Am. J. Trop. Med. Hyg. 34:616–619, 1985.PubMedGoogle Scholar
  21. [21]
    Cherubin C.E., Nair S.R., Dienstag J.L., Purcell R.H., Szmuness W.:Antibody to hepatitis A and B in children in New York city. Pediatrics 61:781–783, 1978.PubMedGoogle Scholar
  22. [22]
    Kapikian A.Z., Greenberg H.B., Wyatt R.G., Kalica A.R., Kim H.W., Brandt C.D., Rodriguez W.J., Parrot R.H., Chanock R.M.:Viral gastroenteritis. In: Evans A.S. (ed.). Viral Infections of Humans: Epidemiology and Control. New York and London. Plenum Medical Book Compnay, p. 296, 1984.Google Scholar
  23. [23]
    Johnson R.T.:Viral aspects of multiple sclerosis. In: Vinken P.J., Bruyn G.W., Klawans H.L., Koetsier J.C. (eds). Handbook of Clinical Neurology, Vol. 47. Elsevier Science Publishers B.V., pp. 319–336, 1985.Google Scholar
  24. [24]
    Sobeslavsky O.:Prevalence of markers of hepatitis B virus infection in various countries: A W.H.O. collaborative study. Bull W.H.O. 58:621–628, 1980.PubMedGoogle Scholar
  25. [25]
    Wyndham C.H., Irwig L.M.:A comparison of the mortality rates of various population groups in the Republic of South Africa. S.A. Med. J. 12:796–802, 1979.Google Scholar
  26. [26]
    W.H.O. Epidemiol Vital Statis Report 10:336, 1975.Google Scholar
  27. [27]
    W.H.O.Epidemiol Vital Statis Report: 14:95–103, 1961.Google Scholar
  28. [28]
    Becker W.B.:The epidemiology of herpes virus infection in three racial communities in Cape Town. S.A. Med. J. 5:109–111, 1966.Google Scholar
  29. [29]
    Rea N.J.:Measles in Africa. Lancet 17:356, 1968.Google Scholar
  30. [30]
    Feldman H.A.:Mumps. In: Evans A.S. (ed). Viral Infections of Humans: Epidemiology and Control. New York and London. Plenum Medical Book Company, p. 424, 1984.Google Scholar
  31. [31]
    Bigley N.J., Rossio J.L., Smith RA, Shaffer C.F., Fresco R.:Immunologic Fundamentals (2 ed.): Chicago, Year Book Medical Publishers Inc. p. 78, 1981.Google Scholar
  32. [32]
    Giessen M. van der, Rossouw E., Veen T.A. van, Zegers B.J.M., Sander P.C.:Quantification of Ig.G. subclasses in sera of normal adults and healthy children between 4 and 12 years of age. Clinical Exp. Immunol. 21:501–509, 1975.Google Scholar
  33. [33]
    Josephs S.H., Buckley R.H.:Serum Ig.D. concentrations in normal infants, Children and adults and in patients with elevated Ig.E. J. Pediatrics 96:417–420, 1980.CrossRefGoogle Scholar
  34. [34]
    Wisniewski H.M., Kieth A.B.:Chronic relapsing experimental allergic encephalomyelitis: An experimental model of multiple sclerosis. Ann Neurol 1:144–148, 1977.PubMedGoogle Scholar
  35. [35]
    Mokhtarian F., McFarlin DE, Raine C.S.:Adoptive transfer of myelin basic protein synthesized cells produces chronic relapsing demyelinating disease in mice. Nature 309:5966–5969, 1984.CrossRefGoogle Scholar
  36. [36]
    Lublin F.D., Maurere P.H., Berry R.G., Tippett D.:Delayed, relapsing experimental allergic encephalomyelitis in mice. J. Immunol, 126:819–822, 1981.PubMedGoogle Scholar
  37. [37]
    Dal Canto M.C., Lipton H.L.:Animal model of human disease-multiple sclerosis. Am J. Path 88:497–500, 1977.Google Scholar

Copyright information

© Masson Italia Periodici 1987

Authors and Affiliations

  • Alter M. 
    • 1
  • Zhen-xin Z. 
    • 1
  • Davanipour Z. 
    • 1
  • Sobel E. 
    • 1
  • Min Lai S. 
    • 1
  • LaRue L. 
    • 1
  1. 1.Neuroepidemiology Section, Department of NeurologyTemple University Medical SchoolPhiladelphia

Personalised recommendations