Skip to main content
Log in

Trigonometric series of classes\(L^p (\mathbb{T}), p \in ]1;\infty [\) and their conservative meansand their conservative means

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

Suppose that a lower triangular matrix μ:[μ (n) m ] defines a conservative summation method for series, i.e.,

$$\mathop {\sup }\limits_{n \in \mathbb{Z}_0 } \sum\limits_{m = 0}^n {\left| {\mu _m^{(n)} - \mu _{m + 1}^{(n)} } \right|}< \infty , \forall m \in \mathbb{Z}_0 , \mathop {\lim }\limits_{n \to \infty } \mu _m^{(n)} = \rho _m \in \mathbb{R}$$

and the sequence (ρ m ,m ∈ ℤ0), is bounded away from zero. Then the trigonometric series\(\sum\nolimits_{m = - \infty }^\infty {\gamma _m e^{imx} }\) is the Fourier series of a functionfL p(\(\mathbb{T}\)), wherep ε ]1; ∞[, if and only if the sequence ofp-norms of its μ-means is bounded:

$$_{n \in \mathbb{Z}_0 }^{\sup } \left\| {\sum\limits_{m = - n}^n {\mu _{\left| m \right|}^{(n)} \gamma _m e^{imx} } } \right\|_p< \infty$$

In the case of the Fejér method, we have the test due to W. and G. Young (1913). In the case of the Fourier method, we obtain the converse of the Riesz theorem (1927).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. E. Edwards,Fourier Series. A Modern Introduction, Vol. 1, Springer-Verlag, Heidelberg (1982).

    Google Scholar 

  2. N. K. Bari,Trigonometric Series [in Russian], Fizmatlit, Moscow (1961).

    Google Scholar 

  3. R. E. Edwards,Fourier Series. A Modern Introduction, Vol. 2, Springer-Verlag, Heidelberg (1982).

    Google Scholar 

  4. A. Zygmund,Trigonometric Series, Vol. 1, Cambridge Univ. Press, Cambridge (1959).

    Google Scholar 

  5. A. Zygmund,Trigonometric Series, Vol. 2, Cambridge Univ. Press, Cambridge (1960).

    Google Scholar 

  6. W. H. Young and G. E. Young, “On the theorem of Riesz-Fischer,”Quart. J. Pure Appl. Math.,44, 49–88 (1913).

    Google Scholar 

  7. S. V. Kislyakov, “On the classical problems of Fourier analysis,” in:Contemporary Problems in Mathematics. Fundamental Directions [in Russian], Vol. 15, Itogi Nauki i Tekhniki, VINITI, Moscow (1987), pp. 135–196.

    Google Scholar 

  8. S. Kaczmarz and H. Steinhaus,Theorie der Orthogonalreihen, Warsaw-Lvov (1935).

  9. S. Baron,Introduction to the Summability Theory of Series [in Russian], Valgus, Tallinn (1977).

    Google Scholar 

  10. M. Tynnov, “T-complementary spaces of Fourier coefficients,”Uchen. Zap. Tartusk. Univ.,192, 65–81 (1966).

    MATH  MathSciNet  Google Scholar 

  11. M. Tynnov, “Fourier coefficients and multipliers of summability,”Uchen. Zap. Tartusk. Univ.,253, 194–201 (1970).

    MATH  MathSciNet  Google Scholar 

  12. M. Riesz, “Sur les fonctions conjuguées,”Math. Z.,27, 218–244 (1927).

    MATH  MathSciNet  Google Scholar 

  13. E. Busko, “Fonctions continues et fonctions bornées non adhérentes dansL (\(\mathbb{T}\)) à la suite de leurs sommes partielles de Fourier,”Studia Math.,34, No. 3, 319–337 (1970).

    MATH  MathSciNet  Google Scholar 

  14. G. Hardy,Divergent Series, Oxford Univ. Press, Oxford (1949).

    Google Scholar 

  15. L. Carleson, “Convergence of Fourier series and growth of their partial sums,”Matematika,11, No. 4, 113–132 (1967).

    Google Scholar 

  16. A. Zygmund,Trigonometric Series, Vol. 2, Cambridge Univ. Press, Cambridge (1960).

    Google Scholar 

  17. P. G. Rooney, “On the representation of sequences as Fourier coefficients,”Proc. Amer. Math. Soc.,11, 762–768 (1960).

    MATH  MathSciNet  Google Scholar 

  18. H. B. Dwight,Tables of Integrals and Other Mathematical Data, 4th edition, Macmillan, New York (1961).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated fromMatematicheskie Zametki, Vol. 62, No. 5, pp. 677–686, November, 1997.

Translated by N. K. Kulman

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brui, I.N. Trigonometric series of classes\(L^p (\mathbb{T}), p \in ]1;\infty [\) and their conservative meansand their conservative means. Math Notes 62, 566–574 (1997). https://doi.org/10.1007/BF02361294

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02361294

Key words

Navigation