Mathematical Notes

, Volume 62, Issue 5, pp 549–556 | Cite as

Null-quadrics of codimension 4 in ℂ7

  • E. G. Anisova
Article
  • 30 Downloads

Abstract

In this paper we study the automorphisms of nondegenerate quadrics of type (4, 3). In particular, we classify the so-called null-quadrics (we prove that there are exactly two null-quadrics up to equivalence), and find their automorphism groups.

Key words

real analytic CR-manifold tangent quadric automorphism group holomorphic automorphism null-quadric 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. K. Beloshapka, “The automorphism groups of real-analytic surfaces are finite-dimensional,”Izv. Akad. Nauk SSSR Ser. Mat.,48, No. 2, 437–442 (1988).Google Scholar
  2. 2.
    H. Poincaré, “Les fonctions analytiques de deux variables et la représentation conforme,”Rend. Circ. Mat. Palermo, 185–220 (1907).Google Scholar
  3. 3.
    V. K. Beloshapka, “On holomorphic transformations of a quadric,”Mat. Sb. [Math. USSR-Sb.],182, No. 2, 203–219 (1991).MATHGoogle Scholar
  4. 4.
    S. N. Shevchenko, “The algebra of infinitesimal automorphisms of quadrics of codimension 2, and their classification,”Mat. Zametki [Math. Notes]55, No. 5, 142–153 (1994).MATHMathSciNetGoogle Scholar
  5. 5.
    N. F. Palinchak, “Real quadrics of codimension 3 in ℂ6 and their nonlinear automorphisms,”Izv. Ross. Akad. Nauk Ser. Mat. [Math. USSR-Izv],59, No. 3, 159–178 (1995).MATHMathSciNetGoogle Scholar
  6. 6.
    R. Horn and Ch. Johnson,Matrix Analysis, Cambridge Univ. Press, Cambridge (1979).Google Scholar
  7. 7.
    H. W. Turnbull, “On equivalence of pencils of Hermitian forms,”Proc. London Math. Soc. (2),32, No. 3, 232–248 (1935).Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • E. G. Anisova
    • 1
  1. 1.M. V. Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations