Skip to main content
Log in

Hybrid simulation of space plasmas: Models with massless fluid representation of electrons. II. Slow and intermediate shocks

  • Mathematical Modeling
  • Published:
Computational Mathematics and Modeling Aims and scope Submit manuscript

Abstract

This is a second article in a series of reviews on hybrid simulation of low-frequency processes in space plasmas. A hybrid model is described with ions represented by particles and electrons by a massless fluid. The main numerical schemes for the implementation of this model are described: the generalized Ohm law scheme and the predictor-corrector scheme. The first part of the article provides basic back-ground information: MHD models (ideal, resistive, and Hall model); the Rankine-Hugoniot relationship for MHD discontinuities; the Hoffman-Teller coordinate system; and a classification of discontinuities. The review part of the article surveys the literature on simulation of slow shocks (including switch-off shocks) and intermediate shocks. The survey of literature on hybrid simulation of intermediate shocks is concluded with a review of studies that use two different numerical codes (the hybrid model and the resistive Hall MHD model). The computation results produced by the two codes are compared. The concluding part presents some remarks concerning the existence of intermediate shocks and their relationship with rotational discontinuities in various numerical models (ideal MHD, resistive MHD, the hybrid model).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. S. Filippychev, “Hybrid simulation of space plasmas: models with massless fluid representation of electrons. I. Collisionless shocks,”Prikl. Mat. Informatika, No. 1, 20–50 (1999).

    MATH  MathSciNet  Google Scholar 

  2. C. G. Darwin, “The dynamical motions of charged particles,”Phil. Mag.,59, No. 6, 537–551 (1920).

    Google Scholar 

  3. C. K. Birdsall and A. B. Langdon,Plasma Physics Via Computer Simulation. McGraw-Hill, New York (1985).

    Google Scholar 

  4. Yu. A. Berezin and V. A. Vshivkov,Particle Method in Rarefied Plasma Dynamics [in Russian], Nauka, Novosibirsk (1980).

    Google Scholar 

  5. Yu. A. Berezin and M. P. Fedoruk,Simulation of Time-Dependent Plasma Processes [in Russian], Nauka, Novosibirsk (1993).

    Google Scholar 

  6. J. P. Boris, “Relativistic plasma simulation-optimization of a hybrid code,” in: J. P. Boris and R. Shanny (editors),Proc. 4th Conf. on Numerical Simulation of Plasmas, US Government Printing Office, Washington, DC (1970), pp. 3–67.

    Google Scholar 

  7. D. Winske, “Hybrid simulation codes with application to shocks and upstream waves,”Space Sci. Rev.,42, Nos. 1–2, 53–66 (1985).

    Google Scholar 

  8. R. Chodura, “A hybrid fluid-particle model of ion heating in high-Mach-number shock waves,”Nucl. Fusion,15, No. 1, 55–61 (1975).

    Google Scholar 

  9. A. G. Sgro and C. W. Nielson, “Hybrid model studies of ion dynamics and magnetic field diffusion during pinch implosions,”Phys. Fluids,19, No. 1, 126–133 (1976).

    Google Scholar 

  10. S. Hamasaki, N. A. Krall, C. E. Wagner, and R. N. Byrne, “Effect of turbulence on theta pinch modeling by hybrid mathematical models,”Phys. Fluids,20, No. 1, 65–71 (1977).

    Google Scholar 

  11. M. M. Leroy, C. C. Goodrich, D. Winske, C. S. Wu, and K. Papadopoulos, “Simulation of a perpendicular bow shock,”Geophys. Rev. Lett.,8, No. 2, 1269–1272 (1981).

    Google Scholar 

  12. M. M. Leroy, D. Winske, C. C. Goodrich, C. S. Wu, and K. Papadopoulos, “The structure of perpendicular bow shocks,”J. Geophys. Res. A,87, No. A7, 5081–5094 (1982).

    Google Scholar 

  13. M. M. Leroy and D. Winske, “Backstreaming ions from oblique Earth bow shocks,”Ann. Geophys.,1, No. 6, 527–536 (1983).

    Google Scholar 

  14. D. Winske and M. M. Leroy, “Diffuse ions produced by electromagnetic ion beam instabilities,”J. Geophys. Res. A,89, No. A5, 2673–2688 (1984).

    Google Scholar 

  15. D. Winske, C. S. Wu, Y. Y. Li, and G. C. Zhou, “Collective capture of released lithium ions in the solar wind,”J. Geophys. Res.,89, No. A9, 7327–7330 (1984).

    Google Scholar 

  16. D. Winske, C. S. Wu, Y. Y. Li, Z. Z. Mou, and S. Y. Guo, “Coupling of newborn ions to the solar wind by electromagnetic instabilities and their interaction with the bow shock,”J. Geophys. Res. A,90, No. A3, 2713–2726 (1985).

    Google Scholar 

  17. T. Hada and C. F. Kennel, “Nonlinear evolution of slow waves in solar wind,”J. Geophys. Res. A,90, No. A1, 531–535 (1985).

    Google Scholar 

  18. D. W. Hewett, “A global method of solving the electron-field equations in a zero-inertia-electron hybrid plasma simulation code,”J. Comput. Phys.,38, No. 3, 378–395 (1980).

    MATH  MathSciNet  Google Scholar 

  19. D. W. Hewett and C. E. Seyler, “Reconnection phenomena during the formation phase of field-reversal experiments,”Phys. Rev. Lett.,46, No. 23, 1519–1522 (1981).

    Google Scholar 

  20. D. W. Hewett, “Spontaneous development of toroidal magnetic field during formation of field reversed theta pinch,”Nucl. Fusion,24, No. 3, 349–357 (1984).

    Google Scholar 

  21. A. Friedman, R. N. Sudan, and J. A. Denavit, “A linearized 3D hybrid code for stability studies of field-reversed ion rings,”J. Comput. Phys.,40, No. 1, 1–35 (1981).

    Google Scholar 

  22. J. A. Byers, B. I. Cohen, W. C. Condit, and J. D. Hanson, “Hybrid simulation of quasineutral phenomena in magnetized plasma,”J. Comput. Phys.,27, No. 3, 363–396 (1978).

    MathSciNet  Google Scholar 

  23. M. Tanaka, “Simulations of heavy ion heating by electromagnetic ion cyclotron waves induced by proton temperature anisotropies,”J. Geophys. Res. A,90, No. A7, 6459–6468 (1985).

    Google Scholar 

  24. Y. Omura, M. Ashour-Abdalla, K. Quest, and R. Gendrin, “Heating of thermal helium in the equatorial magnetosphere: a simulation study,”J. Geophys. Res.,90, No. A9, 8281–8292 (1985).

    Google Scholar 

  25. D. S. Harned, “Quasineutral hybrid simulation of macroscopic plasma phenomena,”J. Comput. Phys.,47, No. 3, 452–462 (1982).

    MATH  Google Scholar 

  26. D. S. Harned, “Rotational instabilities in the field reversed configuration: results of hybrid simulations,”Phys. Fluids,26, No. 5, 1320–1326 (1983).

    MATH  Google Scholar 

  27. D. Winske and M. M. Leroy, “Hybrid simulation techniques applied to the Earth's bow shock,” in: H. Matsumoto and T. Sato, (editors),Computer Simulation of Space Plasmas, Selected Lectures from the 5th ISSS, Kluwer, Hingham, Mass. (1984), pp. 255–278.

    Google Scholar 

  28. S. H. Brecht and V. A. Thomas, “Multidimensional simulations using hybrid particle codes,”Comput. Phys. Commun.,48, No. 1, 135–143 (1988).

    Google Scholar 

  29. D. Winske and N. Omidi, “Hybrid codes: methods and applications,” in: H. Matsumoto and Y. Omura (editors),Computer Space Plasma Physics Simulation Techniques and Software, Terra Scientific, Tokyo (1993), p. 103; D. Winske and N. Omidi,Hybrid Codes: Methods and Applications, Tech. Rep. LA-UR 91-911, Los Alamos National Laboratory (1991).

    Google Scholar 

  30. D. Winske and N. Omidi, “A nonspecialist's guide to kinetic simulations of space plasmas,”J. Geophys. Res. A,101, No. A8, 17287–17303 (1996).

    Google Scholar 

  31. T. E. Stringer, “Low frequency waves in an unbounded plasma,”Plasma Phys.,5, No. 2, 89–107 (1963).

    MATH  Google Scholar 

  32. V. Formisano and C. F. Kennel, “Small amplitude waves in high β plasmas,”J. Plasma. Phys.,3, No. 1, 55–74 (1969).

    Google Scholar 

  33. G. F. Chew, M. L. Goldberger, and F. E. Low, “The Boltzmann equation and one-fluid hydrodynamic equations in the absence of particle collisions,”Proc. Roy. Soc. London,A236, No. 1204, 112–118 (1956).

    MathSciNet  Google Scholar 

  34. S. I. Braginskii, “Plasma transport phenomena,” in:Voprosy Teorii Plazmy, Issue 1, Gosatomizdat, Moscow (1963), pp. 183–272; S. I. Braginskii, “Transport processes in a plasma,”Rev. Plasma Phys.,1, 205–311, Consultants Bureau, New York (1965).

    Google Scholar 

  35. A. McMahon, “Finite gyroradius corrections to the hydromagnetic equations for a Vlasov plasma,”Plasma Phys.,8, No. 10, 1840–1845 (1965).

    Google Scholar 

  36. T. H. Stix,The Theory of Plasma Waves, McGraw-Hill, New York (1962).

    Google Scholar 

  37. A. I. Akhiezer, I. A. Akhiezer, R. V. Polovin, A. G. Sitenko, and K. N. Stepanov,Plasma Electrodynamics [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  38. A. Barnes, “Collisionless damping of hydromagnetic waves,”Phys. Fluids,9, No. 8, 1483–1495 (1966).

    MathSciNet  Google Scholar 

  39. E. A. Foote and R. M. Kulsrud, “Hydromagnetic waves in high β plasmas,”Astrophys. J.,233, No. 1, (Part 1), 302–316 (1979).

    Google Scholar 

  40. J. D. Huba, “Hall magnetohydrodynamics in space and laboratory plasmas,”Phys. Plasmas,2, No. 6, (Part 2), 2504–2513 (1995).

    Google Scholar 

  41. R.-F. Lottermoser and M. Scholer, “Undriven magnetic reconnection in magnetohydrodynamics and Hall magnetohydrodynamics,”J. Geophys. Res.A,102, No. A3, 4875–4892 (1997).

    Google Scholar 

  42. R. Z. Sagdeev, “Collective processes and shock waves in rarefied plasma,” in:Voprosy Teorii Plazmy, Issue 4, Atomizdat, Moscow (1964), pp. 20–80.

    Google Scholar 

  43. E. W. Greenstadt, “Oblique, parallel, and quasi-parallel morphology of collisionless shocks,” in: B. T. Tsurutani and R. G. Stone, (editors),Collisionless Shocks in the Heliosphere: Reviews of Current Research, Geophysics Monographs Series, Vol. 35, AGU, Washington, DC (1985), pp. 169–184.

    Google Scholar 

  44. K. B. Quest, “Simulation of quasi-parallel collisionless shocks,” in: B. T. Tsurutani and R. G. Stone (editors),Collisionless Shocks in the Heliosphere: Reviews of Current Research, Geophysics Monographs Series, Vol.35, AGU, Washington, DC (1985), pp. 185–194.

    Google Scholar 

  45. A. L. Velikovich and M. A. Liberman,Physics of Shock Waves in Gases and Plasmas [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  46. J. R. Kan, M. E. Mandt, and L. H. Lyu, “Quasi-parallel collisionless shocks,”Space Sci. Res.,57, Nos. 3–4, 201–236 (1991).

    Google Scholar 

  47. R. Z. Sagdeev and C. F. Kennel, “Collisionless shock waves,”Sci. Am.,264, No. 4, 106–113 (1991).

    Google Scholar 

  48. J. E. Anderson,Magnetohydrodynamic Shock Waves, MIT, Cambridge, Mass. (19633).

    Google Scholar 

  49. Ya. B. Zel'dovich and Yu. P. Raizer,Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  50. C. F. Kennel, R. D. Blandford, and P. Coppi, “MHD intermediate shock discontinuities. Part I: Rankine-Hugoniot conditions,”J. Plasma Phys.,42, No. 2, 299–319 (1989).

    Google Scholar 

  51. F. de Hoffman and E. Teller, “Magnetohydrodynamic shocks,”Phys. Rev.,80, No. 4, 692–703 (1950).

    Google Scholar 

  52. S. J. Schwartz, M. F. Thomsen, and J. T. Gosling, “Ions upstream of the Earth's bow shock: a theoretical comparison of source populations,”J. Geophys. Res. A,88, No. A3, 2039–2047 (1983).

    Google Scholar 

  53. P. D. Hudson, “Reflection of charged particles by plasma shocks,”Mon. Not. Roy. Astron. Soc.,131, No. 1, 23–49 (1965).

    Google Scholar 

  54. L. D. Landau and E. M. Lifshitz,Statistical Physics [in Russian], Part 1, Nauka, Moscow (1995).

    Google Scholar 

  55. C. F. Kennel, R. D. Blandford, and C. C. Wu, “Structure and evolution of small amplitude intermediate shock waves,”Phys. Fluids,B2, No. 2, 253–269 (1990).

    Google Scholar 

  56. L.-N. Hau and B. U. O. Sonnerup, “On the structure of resistive MHD intermediate shocks,”J. Geophys. Res. A,94, No. A6, 6539–6551 (1989).

    Google Scholar 

  57. P. D. Lax, “Hyperbolic systems of conservation laws. II,”Commun. Pure Appl. Math.,10, No. 4, 537–566 (1957).

    MATH  MathSciNet  Google Scholar 

  58. L. D. Landau and E. M. Lifshits,Electromagnetics of Continuous Media [in Russian], Nauka, Moscow (1982).

    Google Scholar 

  59. S. I. Syrovatskii, “On stability of shock waves inn magnetohydrodynamics,”Zh. Éksp. Teor. Fiz.,36, No. 6(12), 1466–1470 (1958).

    Google Scholar 

  60. P. J. Cargill and T. E. Eastman, “The structure of tangential discontinuities. I. Results of hybrid simulations,”J. Geophys. Res. A,96, No. A8, 13763–13780 (1991).

    Google Scholar 

  61. L. C. Lee and J. R. Kan, “A unified model of tangential magnetopause structure,”J. Geophys. Res.,84, No. 11, 6417–6426 (1979).

    Google Scholar 

  62. V. A. Thomas and D. Winske, “Kinetic simulations of the Kelvin-Helmholtz instability at the magnetopause,”J. Geophys. Res.,98, No. A7, 11425–11438 (1993).

    Google Scholar 

  63. K. B. Quest, “Simulations of high Mach number perpendicular shocks with resistive electrons,”J. Geophys. Res.,91, No. A8, 8805–8815 (1986).

    Google Scholar 

  64. D. Burgess, “Numerical simulation of collisionless shocks,” in: K. Szergo (editor),Proc. Int. Symp. on Collisionless Shocks, CRIP, Budapest (1987), pp. 89–111.

  65. D. Krauss-Varban, “Waves associated with quasi-parallel shocks: generation, mode conversion, and implications,”Adv. Space Rev.,15, No. 8/9, 271–284 (1995).

    Google Scholar 

  66. H. Karimabadi, D. Krauss-Varban, and N. Omidi, “Kinetic structure of intermediate shocks: implications for the magnetopause,”J. Geophys. Res. A,100, No. A7, 11957–11979 (1995).

    Google Scholar 

  67. D. W. Swift, “On the structure of the magnetic slow switch-off shock,”J. Geophys. Res. A,88, No. A7, 5685–5691 (1983).

    Google Scholar 

  68. D. Winske, E. K. Stover, and S. P. Gary, “The structure and evolution of slow mode shocks,”Geophys. Res. Lett.,12, No. 5, 295–298 (1985).

    Google Scholar 

  69. D. Winske, “Numerical modeling of slow shock,” in: V. J. Pizzo, T. E. Holzer, and D. G. Sime (editors),Proc. 6th Int. Solar Wind Conf. (1988), p. 387.

  70. L. C. Lee, Y. Lin, Y. Shi, and B. T. Tsurutani, “Slow shock characteristics as a function of distance from the X-line in the magnetotail,”Geophys. Res. Lett.,16, No. 8, 903–906 (1989).

    Google Scholar 

  71. N. Omidi and D. Winske, “Structure of slow magnetosonic shocks in low beta plasmas,”Geophys. Res. Lett.,16, No. 8, 907–910 (1989).

    Google Scholar 

  72. D. Winske and N. Omidi, “Electromagnetic ion/ion cyclotron instability at slow shocks,”Geophys. Res. Lett.,17, No. 13, 2297–2300 (1990).

    Google Scholar 

  73. Y. Lin and L. C. Lee, “Chaos and ion heating in a slow shock,”Geophys. Res. Lett.,18, No. 8, 1615–1618 (1991).

    Google Scholar 

  74. N. Omidi and D. Winske, “Kinetic structure of slow shocks: effects of the electromagnetic ion/ion cyclotron instability,”J. Geophys. Res. A,97, No. A10, 14801–14821 (1992).

    Google Scholar 

  75. H. X. Vu, J. U. Brackbill, and D. Winske, “Multiple slow switch-off shock solutions,”J. Geophys. Res. A,97, No. A9, 13839–13852 (1992).

    Google Scholar 

  76. D. Winske and N. Omidi, “Electromagnetic ion/ion cyclotron instability: theory and simulations,”J. Geophys. Res.,87, No. A10, 14779–14799 (1992).

    Google Scholar 

  77. H. Karimabadi, “Steepening of Alfvén waves and its effects on the structure of slow shocks,”Geophys. Res. Lett.,22, No. 20, 2693–2696 (1995).

    Google Scholar 

  78. N. Omidi, “Magnetic structure of slow shocks and the associated ion dissipation,”Adv. Space Res.,15, No. 8/9, 489–500 (1995).

    Google Scholar 

  79. N. Omidi, M. Johnson, D. Krauss-Varban, and H. Karimabadi, “Two-dimensional structure of slow shocks,”Geophys. Res. Lett.,22, No. 3, 299–302 (1995).

    Google Scholar 

  80. F. V. Coroniti, “Laminar wave-train structure of collisionless magnetic slow shocks,”Nucl. Fusion,11, No. 3, 261–263 (1971).

    Google Scholar 

  81. Y. Lin and L. C. Lee, “Structure of reconnection layers in the magnetopause,”Space Sci. Rev.,65, No. 1-2, 59–179 (1994).

    Google Scholar 

  82. M. Fujimoto and M. Nakamura, “Acceleration of heavy ions in the magnetotail reconnection layer,”Geophys. Res. Lett.,21, No. 25, 2955–2958 (1994).

    Google Scholar 

  83. Y. Lin and L. C. Lee, “A simulation study of the Riemann problem associated with the magnetotail reconnection,”J. Geophys. Res. A,100, No. A10, 19227–19237 (1995).

    Google Scholar 

  84. Y. Lin and D. W. Swift, “A two-dimensional hybrid simulation of the magnetotail reconnection layer,”J. Geophys. Res. A,101, No. A9, 19859–19870 (1996).

    Google Scholar 

  85. J. U. Brackbill and H. X. Vu, “Electron kinetic effects in switch-off slow shocks,”Geophys. Res. Lett.,20, No. 19, 2015–2018 (1993).

    Google Scholar 

  86. H. X. Vu and J. U. Brackbill, “SELECTID: An implicit, fully kinetic model for low-frequency electromagnetic plasma simulation,”Comput. Phys. Commun.,69, No. 2-3, 253–276 (1992).

    Google Scholar 

  87. J. A. Shercliff, “One-dimensional magnetogasdynamics in oblique fields,”J. Fluid Mech.,9, No. 4, 481–505 (1960).

    MATH  MathSciNet  Google Scholar 

  88. C. C. Wu, “On MHD intermediate shocks,”Geophys. Res. Lett.,14, No. 6, 668–671 (1987).

    Google Scholar 

  89. C. C. Wu, “The MHD intermediate shock interaction with an intermediate wave: Are intermediate shocks physical?”J. Geophys. Res. A,93, No. A2, 987–990 (1988).

    Google Scholar 

  90. C. C. Wu, “Effects of dissipation on rotational discontinuities,”J. Geophys. Res. A,93, No. A5, 3969–3982 (1988).

    Google Scholar 

  91. C. C. Wu, “Formation, structure, and stability of MHD intermediate shocks,”J. Geophys. Res. A,95, No. A6, 8149–8175 (1990).

    Google Scholar 

  92. L.-N. Hau and B. U. O. Sonnerup, “The structure of resistive-dispersive intermediate shocks,”J. Geophys. Res.,95, No. A11, 18791–18808 (1990).

    Google Scholar 

  93. L.-N. Hau and B. U. O. Sonnerup, “The thickness of resistive-dispersive shocks,”J. Geophys. Res.,97, No. A6, 8269–8275 (1992).

    Google Scholar 

  94. L. C. Lee, L. Huang, and J. K. Chao, “On the stability of rotational discontinuities and intermediate shocks,”J. Geophys. Res.,94, No. A7, 8813–8825 (1989).

    Google Scholar 

  95. C. C. Wu and T. Hada, “On rotational discontinuities in both two-fluid and hybrid models,”J. Geophys. Res.,96, No. A3, 3755–3767 (1991).

    Google Scholar 

  96. C. C. Wu and T. Hada, “Formation of intermediate shocks in both two-fluid and hybrid models,”J. Geophys. Res.,96, No. A3, 3769–3778 (1991).

    Google Scholar 

  97. H. Karimabadi and N. Omidi, “Hybrid simulations of intermediate shocks: coplanar and noncoplanar solutions,”Geophys. Res. Lett.,19, No. 17, 1723–1726 (1992).

    Google Scholar 

  98. H. Karimabadi, “Physics of intermediate shocks: A review,”Adv. Space Res.,15, No. 8-9, 507–520 (1995).

    Google Scholar 

  99. D. Krauss-Varban, H. Karimabadi, and N. Omidi, “Kinetic structure of rotational discontinuities: implications for the magnetopause,”Geophys. Res.,100, No. A7, 11981–11999 (1995).

    Google Scholar 

  100. Y. Lin and L. C. Lee, “Formation of the magnetopause boundary layer by magnetic reconnection,”Adv. Space Res.,15, No. 8/9, 531–535 (1995).

    Google Scholar 

  101. Y. Lin and L. C. Lee, “Structure of the dayside reconnection layer in resistive MHD and hybrid models,”J. Geophys. Res.,98, No. A3, 3919–3934 (1993).

    MathSciNet  Google Scholar 

  102. D. Burgess, “Cyclic behavior of quasi-parallel collisionless shocks,”Geophys. Res. Lett.,16, No. 5, 345–348 (1989).

    Google Scholar 

  103. A. I. Akhiezer, G. Ya. Lyubarskii, and R. V. Polovin, “On stability of shock waves in magnetohydrodynamics,”Zh. Éksp. Teor. Fiz.,35, No. 3(9), 731–737 (1958).

    Google Scholar 

Download references

Authors

Additional information

Translated from Prikladnaya Matematika i Informatika, No. 2, pp. 5–33, 1999.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filippychev, D.S. Hybrid simulation of space plasmas: Models with massless fluid representation of electrons. II. Slow and intermediate shocks. Comput Math Model 11, 211–237 (2000). https://doi.org/10.1007/BF02361128

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02361128

Keywords

Navigation