Skip to main content
Log in

On a method for interpolating functions on chaotic nets

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

Supposem, n ∈ℕ,mn (mod 2),K(x)=|x|m form odd,K(x)=|x|m In |x| form even (x∈ℝn),P is the set of real polynomials inn variables of total degree ≤m/2, andx 1,...,x N ∈ℝn. We construct a function of the form

$$\sum\limits_{j = 1}^N {\lambda _j K(x - x_j ) + P(x), where \lambda _j \in \mathbb{R}} , P \in \mathcal{P}, \sum\limits_{j = 1}^N {\lambda _j Q(x_j ) = 0 \forall Q \in } \mathcal{P}$$

coinciding with a given functionf(x) at the pointsx 1,...,x N . Error estimates for the approximation of functionsfW k p (Ω) and theirlth-order derivatives in the normsL q ε) are obtained for this interpolation method, where Ω is a bounded domain in ℝn, ε>0, and Ωε={x∈Ω:dist(x, ∂∈)>ε}.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Ahlberg, E. Nilson, and J. Walsh,The Theory of Splines and their Applications, Academic Press. New York-London (1967).

    Google Scholar 

  2. A. Yu. Shadrin, “Approximation of functions by interpolatory splines defined on nonuniform nets,”Mat. Sb. [Math. USSR-Sb.],181, No. 9, 1236–1255 (1990).

    MATH  Google Scholar 

  3. J. Duchon, “Splines minimizing rotation-invariant semi-norms in Sobolev spaces,”Lecture Notes in Math.,571, 85–100 (1977).

    MATH  MathSciNet  Google Scholar 

  4. O. V. Besov, V. P. Il’in, and S. M. Nikol’skii,Integral Representations of Functions and Embedding theorems [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  5. E. M. Stein,Singular Integrals and Differentiability Properties of Functions, Princeton Math. Ser., Princeton Univ. Press, Princeton, N.J. (1970).

    Google Scholar 

  6. O. V. Matveev, “Spline interpolation of functions of several variables and bases in Sobolev spaces,”Trudy Mat. Inst. Steklov [Proc. Steklov Inst. Math.],198, 125–152 (1992).

    MATH  Google Scholar 

  7. L. Schwartz,Théorie des distributions, Vol2, Hermann, Paris (1951).

    Google Scholar 

  8. E. Stein and G. Weiss,Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton (1971).

    Google Scholar 

  9. S. L. Sobolev,Introduction to the Theory of Cubature Formulas [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  10. S. L. Sobolev,Some Applications of Functional Analysis in Mathematical Physics [in Russian], Nauka, Moscow (1988).

    Google Scholar 

  11. J. Duchon, “Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces,”RAIRO Modél. Math. Anal. Numér.,10, No. 12, 5–12 (1976).

    MathSciNet  Google Scholar 

  12. J. Duchon, “Sur l’erreur d’interpolation des fonctions de plusieurs variables par lesD m-splines,”RAIRO Modél. Math. Anal. Numér.,12, No. 4, 325–334 (1978).

    MATH  MathSciNet  Google Scholar 

  13. O. V. Matveev, “Approximation properties of interpolatoryD m-splines,”Dokl. Akad. Nauk SSSR [Soviet Math. Dokl.],321, No. 1, 14–18 (1991).

    MATH  Google Scholar 

  14. W. R. Madych and S. A. Nelson, “Multivariate interpolation and conditionally positive definite functions,”Approx. Theory Appl. (N. S.),4, No. 4, 77–89 (1988).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated fromMatematicheskie Zametki, Vol. 62, No. 3, pp. 404–417, September, 1997.

Translated by N. K. Kulman

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matveev, O.V. On a method for interpolating functions on chaotic nets. Math Notes 62, 339–349 (1997). https://doi.org/10.1007/BF02360875

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02360875

Key words

Navigation