Fibre Chemistry

, Volume 32, Issue 4, pp 274–278 | Cite as

Thermotropic gelation in wet spinning of fibres from polymer solutions

  • A. L. Kalabin
  • E. A. Pakshver
Chemistry and Technology of Chemical Fibres


A mathematical analytical model of thermotropic gelation in heat exchange of a jet of polymer solution in a spinning bath was plotted by considering the phase equilibrium diagram of the polymer-solvent-precipitator system and the heat transfer process. The law of the change in gel layer thickness in time was determined and the duration of total thermotropic gelation was estimated. It was shown that the qualitative behavior of the functions of the gel layer thickness versus time is close to a unit step function, the duration of total gelation for the thermotropic process is approximately 0.1 sec, and the corresponding value of the Fourier number, Fog}2.


Polymer Heat Transfer Fourier Organic Chemistry Phase Equilibrium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. P. Papkov,Physicochemical Principles of Processing Polymer Solutions [in Russian], Khimiya, Moscow (1971).Google Scholar
  2. 2.
    A. Ziabicki,Fundamentals of Fibre Formation: The Science of Fibre Spinning and Drawing, Wiley, New York (1976).Google Scholar
  3. 3.
    A. T. Serkov, G. I. Kudryavtsev, and Yu. P. Kozhevnikov, in.Theory of Chemical Fibre Spinning [in Russian], Khimiya, Moscow (1975), pp. 69–90.Google Scholar
  4. 4.
    B. E. Geller and E. Zakirov,Khim. Voloknaa, No. 3, 11–14 (1963).Google Scholar
  5. 5.
    H. J. Heyer and V. Grube,Faserf. Textilt., No. 12, 577–584 (1967); No. 1, 33–36 (1968); No. 7, 3143–318 (1968); No. 9, 398–400 (1968).Google Scholar
  6. 6.
    A. T. Serkov, G. I. Kudrjavcev, et al.,Faserf. Textilt., No. 3, 125–130 (1969).Google Scholar
  7. 7.
    A. L. Kalabin, E. A. Pakshver, and N. A. Kukushkin,Teor: Osn. Khim. Tekhnol.,30, No. 3, 327–334 (1996).Google Scholar
  8. 8.
    K. Sen, S. Hagir Bahrami, and P. Bagag,J.M.S.-Rev. Macromol. Chem. Phys., C36(1) (1996).Google Scholar
  9. 9.
    A. V. Lykov,Theory of Thermal Conductivity [in Russian], Vysshaya Shkola, Moscow (1967).Google Scholar
  10. 10.
    A. I. Veinik,Approximate Calculation of Thermal Conductivity Processes [in Russian], Gosenergoizdat, Moscow Lengingrad (1959).Google Scholar
  11. 11.
    E. A. Pakshver, in:Proceedings of the 2nd All-Union Conference on Thermodynamics of Organic Compounds, May 19–21, 1976 [in Russian], Izd. Gor'k. Gos. Unta, Gorky (1976), pp. 85–86.Google Scholar
  12. 12.
    Carbon-Chain Synthetic Fibres [in Russian], Khimiya, Moscow (1973).Google Scholar
  13. 13.
    A. L. Kalabin, E. A. Pakshver, and N. A. Kukushkin,Khim. Volokna, No. 3, 8–11 (1995).Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 2000

Authors and Affiliations

  • A. L. Kalabin
    • 1
  • E. A. Pakshver
    • 2
  1. 1.Tver' State Technical UniversityTver'
  2. 2.All-Russian Scientific-Research Institute of Synthetic FibresTver'

Personalised recommendations