Skip to main content
Log in

The meaning of the thresholds of hydrogen-assisted cracking

  • Published:
Materials Science Aims and scope

Abstract

We analyze the concept of threshold stress intensity factorK HAC and its importance for the processes of hydrogen-assisted cracking (HAC). We discuss the self-similarity of the zone near the crack tip well-described by the stress intensity factorsK, indicate the ambiguities encountered in the determination ofK HAC and the experimental parameters affecting the thresholds of hydrogen-assisted cracking parallel withK. It is shown thatK HAC has the physical meaning of the lower bound of the stress-intensity factors corresponding to the initiation of hydrogen-assisted cracking (if all other conditions are arbitrary). To obtain reliable estimates ofK HAC, one must impose additional restrictions on the experimental procedure of its evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. P. Hirth and H. H. Johnson, “Hydrogen problems in energy related technology,”Corrosion,32, 3–15 (1976).

    CAS  Google Scholar 

  2. H. G. Nelson, “Hydrogen embrittlement,” in:Treatise on Materials Science and Technology, Vol. 25:Embrittlement of Engineering Alloys, Academic Press, New York (1983), pp. 275–359.

    Google Scholar 

  3. A. G. Atkins and Y.-M. Mai,Elastic and Plastic Fracture. Ellis Horwood, Chichester (1988).

    Google Scholar 

  4. M. F. Kanninen and C. H. PopelarAdvanced Fracture Mechanics, Oxford University Press, New York (1985).

    Google Scholar 

  5. ISO 7539–6.Corrosion of Metals and Alloys. Stress Corrosion Testing. Pt. 6: Preparation and Use of Precracked Specimens (1989).

  6. R. W. Judy, Jr., W. E. King, Jr., J. A. Hauser, and T. W. Crooker, “Influence of experimental variables on the measurement of stress corrosion cracking properties of high-strength steels,” in:Environmentally Assisted Cracking: Science and Technology, ASTM STP 1049, ASTM, Philadelphia (1990), pp. 410–422.

    Google Scholar 

  7. A. Turnbull “Test methods for environment assisted cracking,”Brit. Corros. J.,27, 271–289 (1992).

    CAS  Google Scholar 

  8. W. Dietzel and K.-H. Schwalbe, “Application of the rising displacement test to SCC investigations,” in:Slow Strain Rate Testing for the Evaluation of Environmentally Induced Cracking: Research and Engineering Applications, ASTM STP 1210, ASTM, Philadelphia (1993), pp. 134–148.

    Google Scholar 

  9. J. Toribio and A. M. Lancha, “On the meaning of thresholds in environmentally assisted cracking,”J. Mater. Sci. Lett.,11, 1085–1086 (1992).

    CAS  Google Scholar 

  10. J. Toribio and A. M. Lancha, “Experimental evaluation of environmentally assisted cracking: the effect of compressive residual stresses at the crack tip,”J. Mater. Sci. Lett.,14, 1204–1206 (1995).

    CAS  Google Scholar 

  11. G. N. Nykyforchyn, A. T. Tsyrulnyk, B. T. Timofeev, R. B. Kvasnytsa, and V. A. Fedorova, “The effect of a preformed fatigue crack tip geometry on theK Iscc level,”Sov. Mater. Sci.,22, No. 6, 63–68 (1986).

    Google Scholar 

  12. C. S. Carter, “Effect of prestressing on the stress-corrosion resistance of two high-strength steels,”Met. Trans.,3, 584–586 (1971).

    Google Scholar 

  13. O. Jonas, “Influence of preloading on the sustained load cracking of maraging steels in hydrogen,”Corrosion,29, 299–304 (1973).

    CAS  Google Scholar 

  14. A. H. Hanisch and L. H. Burck, “Effects of overloads on the incubation time for stress corrosion cracking of 7075 aluminum,”Corrosion,38, 330–335 (1982).

    CAS  Google Scholar 

  15. S. K. Putatunda and V. Venugopal, “Influence of overload plastic zone size on stress corrosion crack growth behavior of a low-alloy steel in 3.0% NaCl solution,”J. Test. Eval.,18, 182–190 (1990).

    CAS  Google Scholar 

  16. W. Y. Chu, C. M. Hsiao, and S. Q. Li, “A new engineering fracture toughness parameterK Iscc(p),”Scr. Met. 13, 1057–1062 (1979).

    CAS  Google Scholar 

  17. R. J. Walter and W. T. Chandler, “The role of crack blunting in sustained load crack growth,”Scr. Met.,13, 975–976 (1979).

    Article  Google Scholar 

  18. A. Baus, J. C. Charbonnier, H.-P. Lieurade, B. Marandet, L. Roesch, and G. Sanz, Étude par la mécanique de la rupture de la ténacité, de la fissuration par fatigue et de la fissuration par corrosion sous contrainte d'aciers trés haute résistance,”Rev. Mét.,72, 891–935 (1975).

    CAS  Google Scholar 

  19. R. P. Wei and S. R. Novak, “Interlaboratory evaluation ofK Iscc andda/dt determination procedures for high-strength steels,”J. Test. Eval.,15, 38–75 (1987).

    CAS  Google Scholar 

  20. K. Minoshima, T. Sugiyama, and K. Komai, “The influence of crack length on SCC crack growth behavior of high-strength steel under dynamic loading conditions,”JSME Int. J.,33, 520–526 (1990).

    CAS  Google Scholar 

  21. J. Toribio, “The use of precracked and notched slow strain rate specimens,” in:Slow Strain Rate Testing for the Evaluation of Environmentally Induced Cracking: Research and Engineering Applications, ASTM STP 1210, ASTM, Philadelphia (1993), pp. 105–122.

    Google Scholar 

  22. R. A. Mayville, T. J. Warren, and P. D. Hilton, “Determination of the loading rate needed to obtain environmentally assisted cracking in rising load tests,”J. Test. Eval.,17, 203–211 (1989).

    CAS  Google Scholar 

  23. G. Gabetta, “Displacement rate as a parameter for assessing environmentally assisted cracking of steels,”Brit. Corros. J.,28, 107–111 (1993).

    CAS  Google Scholar 

  24. F. P. Ford, “Stress corrosion cracking of iron-base alloys in aqueous environments,”Treatise on Materials Science and Technology, Vol. 25:Embrittlement of Engineering Alloys Academic Press, New York (1983), pp. 235–274.

    Google Scholar 

  25. W. Dietzel and M. Pfuff “The effect of deformation rates on hydrogen embrittlement,” in:Hydrogen Effects in Materials, TMS, Warrendale (1996), pp. 303–311.

    Google Scholar 

  26. V. Panasyuk and V. Kharin, “The influence of hydrogenating environments, on crack propagation in metals,” in:Environment Assisted Fatigue (EGF 7), Mech. Eng. Publ., London (1990), pp. 123–144.

    Google Scholar 

  27. J. Toribio and V. Kharin, “Evaluation of hydrogen assisted cracking: the meaning and significance of the fracture mechanics approach,”Nucl. Eng. Design (1998) (in print).

  28. J. Toribio and V. Kharin, “The reliability of the fracture mechanics approach to environmentally assisted cracking: 2. Engineering safe design,”Mater. Design,18, 95–101, (1997).

    CAS  Google Scholar 

  29. J. Toribio and V. Kharin, “K-dominance condition in hydrogen assisted cracking: the role of the far field,”Fatigue Fract. Eng. Mater. Struct.,20, 729–745 (1997).

    CAS  Google Scholar 

  30. R. M. McMeeking, “Finite deformation analysis of crack tip opening in elastic-plastic materials and implications for fracture”J. Mech. Phys. Solids,25, 357–381 (1977).

    CAS  Google Scholar 

  31. V. Kharin and J. Toribio, “Alternating stress-strain fields near a crack tip under cyclic loading,”Anales Méc. Fractura,15, 355–360 (1998).

    Google Scholar 

  32. S. Ya. Yarema,Testing Method for the Determination of Crack-Growth Rate and Crack-Extension Resistance Under Cyclic Loading, Karpenko Physicomechanical Institute, Ukrainian Academy of Sciences, L'viv (1994).

    Google Scholar 

  33. E. P. Sorensen, “A numerical investigation of plane strain stable growth under small scale yielding conditions,” in:Elastic-Plastic Fracture, ASTM STP 668, Philadelphia (1979), pp. 151–174.

  34. V. Tvergaard and J. W. Hutchinson, “The relation between crack growth resistance and fracture process parameters in elastic-plastic solids,”J. Mech. Phys. Solids,40, 1377–1397 (1992).

    Google Scholar 

  35. M. Lu, P. S. Pao, T. W. Weir, G. W. Simmons, and R. P. Wei, “Rate controlling processes for crack growth in hydrogen sulfide for an AISI 4340 steel,”Met. Trans. A12, 805–811 (1981).

    Google Scholar 

  36. R. P. Wei and M. Gao, “Hydrogen embrittlement and environmentally assisted crack growth,” in:Hydrogen Effects on Materials Behavior, TMS, Warrendale (1990), pp. 789–813.

    Google Scholar 

  37. A. McMinn, R. A. Page, and S. J. Hudak, Jr., “An experimental technique for determining the effect of dynamic strain on crack-tip chemistry,” in:Corrosion Chemistry: Pits, Crevices, and Cracks, Teddington (1987), pp. 249–268.

  38. V. A. Marichev and I. L. Rosenfeld, “Investigation of the mechanism of stress corrosion cracking in high strength steels,”Corrosion,32, 423–429 (1976).

    CAS  Google Scholar 

  39. J. K. Tien, A. W. Thompson, I. M. Bernstein, and R. S. Richards, “Hydrogen transport by dislocations,”Met. Trans.,A7, 821–829 (1976).

    Google Scholar 

  40. T. Tabata and H. K. Birnbaum, “Direct observations of the effect of hydrogen on the behavior of dislocations in iron,”Scr. Met.,17, 947–950 (1983).

    Article  CAS  Google Scholar 

  41. I. Kramer and J. P. Hirth, “Effect of hydrogen on the dislocation density distribution,”Scr. Met.,18, 539–541 (1984).

    Article  CAS  Google Scholar 

  42. O. A. Onyewuenyi, “Plastic instability and hydrogen in iron-based alloys,” in:Hydrogen Degradation of Ferrous Alloys, Noyes Publ., Park Ridge (1985), pp. 414–453.

    Google Scholar 

  43. R. C. Newman and M. Saito, “Anodic stress-corrosion cracking: slip-dissolution and film induced cleavage,” in:Corrosion-Deformation Interactions, Edit. de Physique, Les Ulis (1993), pp. 3–26.

    Google Scholar 

  44. O. N. Romaniv and G. N. Nikiforchin,Mechanics of Corrosion Fracture of Engineering Alloys [in Russian], Metallurgiya, Moscow (1986).

    Google Scholar 

  45. H. E. Hanninen, T. C. Lee, I. M. Robertson, and H. K. Birnbaum, “Direct observations on hydrogen effects on fracture of A533B steel,”Corrosion-Deformation Interactions CDI'92, Edit. de Physique, Les Ulis (1993), pp. 377–388.

    Google Scholar 

  46. A. Valiente, L. Caballero, and J. Ruiz, “Propagaciyn de grieta en acero, 316L bajo carga catydica de hidrygeno,”Anales Méc. Fractura,15, 401–406 (1998).

    Google Scholar 

  47. V. Kharin, and J. Toribio “Effect of fatigue preloading on hydrogen assisted cracking initiation,”Anales Méc. Fractura,15, 361–366 (1998).

    Google Scholar 

  48. J. Toribio and V. Kharin, “The effect of history on hydrogen assisted cracking: I Coupling of hydrogenation and crack growth,”Int. J. Fracture (1998) (in print).

Download references

Authors

Additional information

University of La Coruña ETSI Caminos, Campus de Elviña, 15071 La Coruña, Spain; Pidstryhach Institute of Applied Problems in Mechanics and Mathematics, Ukrainian Academy of Sciences, L'viv. Published in Fizyko-Khimichna Mekhanika Materialiv, Vol. 34, No. 4, pp. 27–38, July–August, 1998

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toribio, J., Kharin, V. The meaning of the thresholds of hydrogen-assisted cracking. Mater Sci 34, 476–489 (1998). https://doi.org/10.1007/BF02360699

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02360699

Keywords

Navigation