Neuroscience and Behavioral Physiology

, Volume 24, Issue 6, pp 479–482 | Cite as

Participation of opiate δ-receptors in immunomodulation

  • M. A. Cheido
  • G. V. Idova
Article

Abstract

The activation of the opiate δ-receptors by the highly specific agonist DSLET evokes an immunoinhibitory effect in CBA mice which disappears with preliminary blockade of S2 serotonin receptors by cyproheptadine. The blockade of δ-receptors by the antagonist ICI 174 864 leads to stimulation of the immune response, which is tested on the basis of the number of rosette-forming cells. Neither stimulation nor suppression of immunogenesis are manifested in animals with a transsected hypophyseal stalk; this suggests the central action of the opioids. The increase in the immune response obtained with the administration of ICI 174 864 is associated with the dopaminergic system, since it is prevented by haloperidol. It was demonstrated that the thymus participates in the immune-stimulating influence of ICI 174 864.

Keywords

Immune Response Serotonin Haloperidol Central Action Dopaminergic System 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. A. Gvozdeva, G. V. Shurina, T. L. Voronkova, et al., “The effect of the synthetic opioid dalargin on the functional state of lymphocytesin vivo andin vitro,” in:The Neurohumoral Regulation of Immune Homeostasis [in Russian], Leningrad (1986), pp. 135–136.Google Scholar
  2. 2.
    L. V. Devoino and R. Yu. Il'yuchenok,The Monoaminergic Systems in the Regulation of Immune Reaction [in Russian], Novosibirsk (1983).Google Scholar
  3. 3.
    A. A. Zazulya and S. F. Pshenichkin, “The opioids and immunity,”Itogi Nauki i Tekhniki. Seriya Immunologiya,25, 48–120 (1990).Google Scholar
  4. 4.
    G. V. Idova, M. A. Cheido, and L. V. Devoino, “IgM- and IgG-rosette-formation in the primary and secondary response in a system of the syngeneic transfer of spleen cells,”Zh. Mikrobiol., Épidemiol. Immunobiol., No. 2, 57–60 (1976).Google Scholar
  5. 5.
    É. M. Kukain, R. K. Mutsenietse, and V. E. Klusha, “A comparison of the neuro- and immunoregulatory properties of lowmolecular weight neuropeptides,”Byull. Éksp. Biol. Medits., No. 8, 79–82 (1982).Google Scholar
  6. 6.
    D. J. J. Carr, R. T. Radulescu, B. R. de Costa, et al., “Differential effect of opioids on immunoglobulin production by lymphocytes isolated from Peyer's patches and spleen,”Life Sci.,47, 1059–1069 (1990).CrossRefPubMedGoogle Scholar
  7. 7.
    R. Cotton, M. G. Giles, L. Miler, et al., “ICI 174 864, a highly selective antagonist for the delta opiate receptor,”Eur. J. Pharmacol.,97, 331–332 (1984).CrossRefPubMedGoogle Scholar
  8. 8.
    R. J. Cross, W. H. Brooks, T. L. Roszman, and W. R. Markesbery, “Hypothalamic-immune interactions. Effect of hypophysectomy on neuroimmunomodulation,”J. Neurol. Sci.,53, 557–566 (1982).CrossRefPubMedGoogle Scholar
  9. 9.
    L. Devoino, E. Alperina, and G. Idova, “Dopaminergic stimulation of the immune reaction: interaction of serotoninergic and dopaminergic systems in neuroimmunomodulation,”Intern. J. Neurosci.,40, 271–288 (1988).Google Scholar
  10. 10.
    R. P. Dilts and P. W. Kalivas, “Autoradiographic localization of delta opioid receptors within the mesocorticolimbic system using radioiodinated [2-D-Penicillamine, 5-D-Penicillamine] enkephalin (I-DPDPE),”Synapse,6, 121–132 (1990).CrossRefPubMedGoogle Scholar
  11. 11.
    E. Esposito, L. Cervo, P. Pertillo, et al., “Dopamine denervation of the nucleus accumbens induces a selective increase in the number of delta-opioid binding sites,”Brain Res.,436, No. 1, 25–29 (1987).PubMedGoogle Scholar
  12. 12.
    G. Gacel, M. C. Fournie-Zaluski, and B. P. Roques, “Tyr-d-Ser-Gly-Phe-Leu, a highly preferential ligand for delta-opiate receptors,”FEBS Lett.,118, 245 (1981).Google Scholar
  13. 13.
    B. D. Jankovic and D. Maric, “Enkephalins and immunity. I.In vivo suppression and potentiation of humoral immune response,”Ann. N. Y. Acad. Sci.,496, 115–125 (1987).PubMedGoogle Scholar
  14. 14.
    C. Le Moine, E. Normand, A. F. Guitteny, et al., “Dopamine receptor give[n] expression by enkephalin neurons in rat forebrain,”Proc. Natl. Acad. Sci.,87, No. 1, 203–234 (1990).Google Scholar
  15. 15.
    N. H. Majeed, W. Lason, B. Przewlocka, and R. Przewlocki, “Serotoninergic regulation of the brain and gut beta-endorphin and dynorphin content in the rat,”Pol. J. Pharmacol. Pharm.,37, 909–918 (1985).PubMedGoogle Scholar
  16. 16.
    A. Mansour, H. Kachaturian, M. E. Lewis, et al., “Autoradiographic differentiation of mu, delta and kappa opioid receptors in the rat forebrain and midbrain,”J. Neurosci.,7, 2445–2464 (1987).PubMedGoogle Scholar
  17. 17.
    D. Maric and B. D. Jankovic, “Enkephalins and immunity. II.In vivo modulation of cell-mediated immunity,”Ann. N. Y. Acad. Sci.,496, 126–136 (1987).PubMedGoogle Scholar
  18. 18.
    D. Maric and B. D. Jankovic, “Methionine-enkephalin acts via opioid receptors on humoral immune response,”Fed. Proc.,46, No. 4, 1146 (1987).Google Scholar
  19. 19.
    D. E. Millhorn, T. Hokfelt, A. A. S. Verhofstad, and L. Terenius, “Individual cells in the raphe nuclei of the medulla oblongata in rat that contain immunoreactivities for both serotonin and enkephalin project to the spinal cord,”Exp. Brain Res.,75, No. 3, 536–542 (1989).PubMedGoogle Scholar
  20. 20.
    J. Velic, D. Maric and B. D. Jankovic, “Effect of intracerebroventricularly injected methionine-enkephalin on humoral immune response in the rat,”Period. Biol.,92, No. 1, 73–74 (1990).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • M. A. Cheido
    • 1
  • G. V. Idova
    • 1
  1. 1.Department of the Physiology of Man and Animals, State UniversitySamara

Personalised recommendations