Potato Research

, Volume 31, Issue 1, pp 129–135 | Cite as

Diel changes in tuber volume

  • B. J. Schnieders
  • L. H. J. Kerckhoffs
  • P. C. Struik
Article

Summary

The long-term and short-term changes in volume of tubers from plants grown under controlled conditions, when assessed by an accurate, non-destructive tuber-volume meter, showed sigmoid increases in volume. The diel changes were remarkable: the rate of volume increase was very high shortly after the onset of the dark phase, but it declined sharply directly after the onset of the light phase; it was much faster during the night than during the day, especially in the later stages of growth. The nocturnal rate of volume increase was greatest when the tubers showed their greatest overall rate of growth. The daytime increases in volume were fastest during the early stages of tuber development. The key process underlying these phenomena seems to be the movement of water out of and into the tuber.

Additional keywords

potato Solanum tuberosum L. tuber growth bulking diurnal periodicity circadian rhythm water movement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmed, Ch. M. S. & G. R. Sagar, 1981. Volume increase of individual tubers of potatoes grown under field conditions.Potato Research 24: 279–288.Google Scholar
  2. Baker, D. A. & J. Moorby, 1969. The transport of sugar, water and ions into developing potato tubers.Annals of Botany 33: 729–741.Google Scholar
  3. Engel, K. H. & A. Raeuber, 1961. Beiträge zur Phänometrie der Kartoffel.European Potato Journal 4: 152–164.Google Scholar
  4. Engel, K. H., G. Meinl & A. Raeuber, 1964. Das tagesperiodische Wachstum der Kartoffelknollen und der Verlauf der Temperatur.Zeitschrift für angewandte Meteorologie 4: 364–369.Google Scholar
  5. Engels, Ch. & H. Marschner, 1986a. Allocation of photosynthate to individual tubers ofSolanum tuberosum L. I. Relationship between tuber growth rate and enzyme activities of the starch metabolism.Journal of Experimental Botany 37: 1795–1803.Google Scholar
  6. Engels, Ch. & H. Marschner, 1986b. Allocation of photosynthate to individual tubers ofSolanum tuberosum L. II. Relationship between growth rate, carbohydrate concentration and14C-partitioning within tubers.Journal of Experimental Botany 37: 1804–1812.Google Scholar
  7. Engels, Ch. & H. Marschner, 1986c. Allocation of photosynthate to individual tubers ofSolanum tuberosum L. III. Relationship between growth rate of individual tubers, tuber weight and stolon growth prior to tuber initiation.Journal of Experimental Botany 37: 1813–1822.Google Scholar
  8. Gray, D., 1973. The growth of individual tubers.Potato Research 16: 80–84.Google Scholar
  9. Gray, D. & D. J. Smith, 1973. The pattern of assimilate movement in potato plants.Potato Research 16: 293–295.Google Scholar
  10. Kramer, P. J., 1937. The relation between rate of transpiration and rate of absorption of water in plants.American Journal of Botany 24: 10–15.Google Scholar
  11. Krauss, A. & H. Marschner, 1974. Einfluss der Tag/Nacht-Periodik auf Knollengewicht und Ca-Verlagerung in Stolonen von Kartoffelpflanzen.Zeitschrift für Pflanzenernährung und Bodenkunde 137: 116–123.Google Scholar
  12. MacMillan, C., 1891. On the growth periodicity of the potato tuber.American Nature 25: 462–469.Google Scholar
  13. Marschner, H., A. Krauss, D. J. Mares, Ch. Engels & B. Sattelmacher, 1984. Knolleninduktion und Knollenwachstum in Abhängigkeit von exogenen und endogenen Faktoren.Berichte der Deutschen Botanischen Gesellschaft 97: 269–282.Google Scholar
  14. Moorby, J., 1968. The influence of carbohydrate and mineral nutrient supply on the growth of potato tubers.Annals of Botany 32: 57–68.Google Scholar
  15. Oparka, K. J., 1985. Changes in partitioning of current assimilate during tuber bulking in potato (Solanum tuberosum L.) cv. Maris Piper.Annals of Botany 55: 705–713.Google Scholar
  16. Oparka, K. J. & H. V. Davies, 1985. Translocation of assimilates within and between potato stems.Annals of Botany 56: 45–54.Google Scholar
  17. Peterson, R. L., W. G. Barker & M. J. Howarth, 1985. Development and structure of tubers. In: P. H. Li (Ed.), Potato physiology. Academic Press, Orlando, Florida, USA, pp. 123–152.Google Scholar
  18. Plaisted, P. H., 1957. Growth of the potato tuber.Plant physiology 32: 445–453.Google Scholar
  19. Reeve, R. M., H. Timm & M. L. Weaver, 1973. Parenchyma cell growth in potato tubers. II. Cell divisions vs. cell enlargement.American Potato Journal 50: 71–78.Google Scholar
  20. Shevelukha, V. S. & L. A. Makhan'ko, 1972. Daily periodicity of linear growth in potato and its correlation with the course of crop formation.Fiziologiya Rastenii 19: 78–88.Google Scholar
  21. Struik, P. C., E. van Heusden & K. Burger-Meijer, 1988a. Effects of short periods of long days on the development, yield and size distribution of tubers ofSolanum tuberosum L. cv. Bintje.Netherlands Journal of Agricultural Research 36 (in press).Google Scholar
  22. Struik, P. C., B. J. Schnieders, L. H. J. Kerckhoffs & G. W. J. Visscher, 1988b. A device for measuring the growth of individual potato tubers non-destructively and precisely.Potato Research 31: 137–143.Google Scholar
  23. Struik, P. C. & G. van Voorst, 1986. Effect of drought on the initiation, yield and size distribution of tubers ofSolanum tuberosum L. cv. Bintje.Potato Research 29: 487–500.CrossRefGoogle Scholar
  24. Wurr, D. C. E., 1977. Some observations of patterns of tuber formation and growth in the potato.Potato Research 20: 63–75.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • B. J. Schnieders
    • 1
  • L. H. J. Kerckhoffs
    • 1
  • P. C. Struik
    • 1
  1. 1.Department of Field Crops and Grassland ScienceWageningen Agricultural UniversityWageningenthe Netherlands

Personalised recommendations