Materials Science

, Volume 35, Issue 2, pp 166–172 | Cite as

A method for the determination of the elastic equilibrium of isotropic bodies with curvilinear inclusions. Part 3. Antiplane deformation

  • L. T. Berezhnyts'kyi
  • P. S. Kachur
  • L. P. Mazurak
Article

Abstract

Within the framework of the approach proposed by L. P. Mazurak, L. T. Berezhnyts'kyi, and P. S. Kachur [“Method for determination of elastic equilibrium of isotropic bodies with curvilinear inclusions. Part 1. Mathematical foundations,”Fiz.-Khim. Mekh. Mater.,33, No. 6, 21–31 (1997)], we construct a new method for the determination of elastic equilibrium of cylindrical bodies with noncanonical curvilinear foreign elastic inclusions under conditions of longitudinal shear. Unlike the method of perturbation of the form of a boundary, this method imposes no restrictions on the form of inclusions. The method is based on a procedure of determination of contour integrals of the Cauchy type by using the Faber polynomials.

Keywords

Structural Material Contour Integral Mathematical Foundation Cylindrical Body Isotropic Body 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. T. Berezhnitskii and M. P. Len', “On the determination of stress intensity factors in the case of antiplane strain,”Fiz.-Khim. Mekh. Mater.,10, No. 4, 57–62 (1974).Google Scholar
  2. 2.
    L. T. Berezhnitskii and M. P. Len', “Antiplane strain of a body with rigid inclusion,”Probl. Prochn., No. 11, 10–14 (1975).Google Scholar
  3. 3.
    L. T. Berezhnyts'kyi, V. V. Panasyuk, and V. M. Sadivs'kyi, “Longitudinal shear in an isotropic body with acute elastic inclusion,”Dop. Akad. Nauk Ukr. SSR, Ser. A., No. 5, 413–416 (1977).Google Scholar
  4. 4.
    L. T. Berezhnitskii, P. S. Kachur, L. P. Mazurak, and Ya. I. Khodan, “Antiplane strain of a body with curvilinear elastic acute inclusion,”Fiz.-Khim. Mekh. Mater.,18, No. 3, 63–69 (1982).Google Scholar
  5. 5.
    L. T. Berezhnyts'kyi, P. S. Kachur, and L. P. Mazurak, “On the theory of stress concentrations with rounded tips,”Fiz.-Khim. Mekh. Mater.,25, No. 5, 28–41 (1989).Google Scholar
  6. 6.
    L. P. Mazurak, L. T. Berezhnyts'kyi, and P. S. Kachur, “Method for determination of elastic equilibrium of isotropic bodies with curvilinear inclusions. Part 1. Mathematical foundations,”Fiz.-Khim. Mekh. Mater.,33, No. 6, 21–31 (1998).Google Scholar
  7. 7.
    L. P. Mazurak, L. T. Berezhnyts'kyi, and P. S. Kachur, “Method for determination of elastic equilibrium of isotropic bodies with curvilinear inclusions. Part 2. Plane problem,”Fiz.-Khim. Mekh. Mater.,34, No. 1, 16–26 (1999).Google Scholar
  8. 8.
    A. I. Markushevich,A Brief Course in the Theory of Analytic Functions [in Russian], Nauka, Moscow (1978).Google Scholar
  9. 9.
    P. K. Suetin,Series in Faber Polynomials [in Russian], Nauka, Moscow (1984).Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 2000

Authors and Affiliations

  • L. T. Berezhnyts'kyi
  • P. S. Kachur
  • L. P. Mazurak

There are no affiliations available

Personalised recommendations