Behavior Genetics

, Volume 26, Issue 2, pp 161–166 | Cite as

Using multivariate genetic modeling to detect pleiotropic quantitative trait loci

  • Dorret I. Boomsma
Article

Abstract

Large numbers of sibling pairs or other relatives are needed to detect linkage between a quantitative trait locus (QTL) and a marker, especially if the variance of the QTL is low relative to the total phenotypic variance of the trait. One strategy to increase the power to detect linkage is to reduce the environmental variance in the trait under analysis. This approach was explored by carrying out a series of simulation studies in which multivariate observations were used to estimate individual genotypic values at a QTL, that pleiotropically affected more than one trait. Simulations for different QTL allele frequencies with a completely informative marker showed that the power to detect the QTL increased substantially when estimates of individual genotypic values at the QTL were used in the linkage analysis instead of phenotypic observations. An advantage of this approach is that, rather than employing phenotypic selection, individuals with extreme genotypes may be selected when ascertaining a sample of extreme families.

Key Words

Genotypic factor scores multivariate genetic modeling linkage analysis quantitative trait locus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amos, C. I., and Elston, R. C. (1989). Robust methods for the detection of genetic linkage for quantitative data from pedigrees.Genet. Epidemiol. 6:349–360.PubMedGoogle Scholar
  2. Amos, C. I., Elston, R. C., Bonney, G. E., Keats, B. J. B., and Berenson, G. S. (1990). A multivariate method for detecting genetic linkage, with application to a pedigree with an adverse lipoprotein phenotype.Am. J. Hum. Genet. 47:247–254.PubMedGoogle Scholar
  3. Blackwelder, W. C., and Elston, R. C. (1982). Power and robustness of sib-pair linkage tests and extension to larger sibships.Comm. Stat. Theory Meth. 11:449–484.Google Scholar
  4. Boomsma, D. I., and Molenaar, P. C. M. (1986). Using LIS-REL to analyze genetic and environmental covariance structure.Behav. Genet. 16:237–250.CrossRefPubMedGoogle Scholar
  5. Boomsma, D. I., Molenaar, P. C. M., and Orlebeke, J. F. (1990). Estimation of individual genetic and environmental factor scores.Genet. Epidemiol. 7:83–91.CrossRefPubMedGoogle Scholar
  6. Boomsma, D. I., Molenaar, P. C. M., and Dolan, C. V. (1991). Estimation of individual genetic and environmental profiles in longitudinal designs.Behav. Genet. 21:241–253.CrossRefGoogle Scholar
  7. Cardon, L. R., and Fulker, D. W. (1994). The power of interval mapping of quantitative trait loci using selected sib pairs.Am. J. Hum. Genet. 55:825–833.PubMedGoogle Scholar
  8. Carey, G., and Williamson, J. (1991). Linkage analysis of quantitative traits: Increased power by using selected samples.Am. J. Hum. Genet. 49:786–796.PubMedGoogle Scholar
  9. Eaves, L., and Meyer, J. (1994). Locating human quantitative trait loci: Guidelines for the selection of sibling pairs for genotyping.Behav. Genet. 24:443–455.CrossRefPubMedGoogle Scholar
  10. Fulker, D. W., and Cardon, L. R. (1994). A sib-pair approach to interval mapping of quantitative trait loci.Am. J. Hum. Genet. 54:1092–1103.PubMedGoogle Scholar
  11. Fulker, D. W., Cherney, S. S., and Cardon, L. R. (1995). Multipoint interval mapping of quantitative trait loci, using sib pairs.Am. J. Hum. Genet. 56:1224–1233.PubMedGoogle Scholar
  12. Goldgar, D. E. (1990). Multipoint analysis of human quantitative genetic variation.Am. J. Hum. Genet. 47:957–967.PubMedGoogle Scholar
  13. Haseman, J. K., and Elston, R. C. (1972). The investigation of linkage between a quantitative trait and a marker locus.Behav. Genet. 2:3–19.CrossRefPubMedGoogle Scholar
  14. Kruglyak, L., and Lander, E. (1995). Complete multipoint sib pair analysis of qualitative and quantitative traits.Am. J. Hum. Genet. 57:439–454.PubMedGoogle Scholar
  15. Lawley, D. N., and Maxwell, A. E. (1971).Factor Analysis as a Statistical Method. Butterworths, London.Google Scholar
  16. Martin, N. G., and Eaves, L. J. (1977). The genetical analysis of covariance structure.Heredity 38:79–95.PubMedGoogle Scholar
  17. Mulaik, S. A. (1972).The Foundations of Factor Analysis, McGraw-Hill, New York.Google Scholar
  18. Penrose, G. S. (1983). Genetic linkage in graded human characters.Ann. Eugen. 8:223–237.Google Scholar
  19. Risch, N., and Zhang, H. (1995). Extreme discordant sib pairs for mapping quantitative trait loci in humans.Science 268:1584–1589.PubMedGoogle Scholar
  20. Saris, W. E., De Pijper, M., and Mulder, J. (1978). Optimal procedures for estimation of factor scores.Sociol. Methods Res. 7:85–106.Google Scholar
  21. Schork, N. J. (1993). Extended multipoint identity-by-descent analysis of human quantitative traits: Efficiency, power, and modeling considerations.Am. J. Hum. Genet. 53:1306–1319.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Dorret I. Boomsma
    • 1
  1. 1.Department of PsychonomicsVrije UniversiteitAmsterdamThe Netherlands

Personalised recommendations