Journal of Mathematical Sciences

, Volume 85, Issue 4, pp 2017–2114 | Cite as

Birational geometry of linear algebraic groups and galois modules

  • V. E. Voskresenskii


Algebraic Group Linear Algebraic Group Birational Geometry Galois Module 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    V. V. Batyrev, “Three-dimensional toric Fano manifolds”,Izv. Akad. Nauk SSSR, Ser. Mat.,48, No. 4, 704–717 (1981).MathSciNetGoogle Scholar
  2. 2.
    F. A. Bogomolov, “The stable rationality of quotient spaces of simply connected groups”,Mat. Sb.,130, 3–17 (1986).MATHMathSciNetGoogle Scholar
  3. 3.
    F. A. Bogomolov, “Brauer's group of quotient spaces of linear representations”,Izv. Akad. Nauk SSSR, Ser. Mat.,51, No. 3, 485–516 (1987).MATHGoogle Scholar
  4. 4.
    F. A. Bogomolov and P. I. Katsylo, “The rationality of some factor-manifolds”,Mat. Sb.,126, 584–589 (1985).MathSciNetGoogle Scholar
  5. 5.
    E. B. Vinberg, “The rationality of the invariant field of a triangular group”,Vestn. Mosk. Univ.,2, 23–24 (1982).MATHMathSciNetGoogle Scholar
  6. 6.
    E. B. Vinberg and A. L. Onishchik,Seminar on Lie and Algebraic Groups [in Russian], Nauka, Moscow (1988).Google Scholar
  7. 7.
    V. E. Voskresenskii, “The Picar group of linear algebraic groups”, In:Investigation on Number Theory [in Russian], Saratov Univ. Press, Saratov (1969), pp. 7–16.Google Scholar
  8. 8.
    V. E. Voskresenskii, “On the birational equivalency of linear algebraic groups”,Dokl. Akad. Nauk SSSR, Ser Mat.,188, No. 5, 978–981 (1969).MATHGoogle Scholar
  9. 9.
    V. E. Voskresenskii, “Birational properties of linear algebraic groups”,Izv. Akad. Nauk SSSR, Ser. Mat.,34, No. 1, 3–19 (1970).MATHMathSciNetGoogle Scholar
  10. 10.
    V. E. Voskresenskii, “On a structure of the invariant subfield of a cyclic group of automorphisms of the fieldℚ(x 1,...,x n)”,Izv. Akad. Nauk SSSR, Ser. Mat.,34, No. 2, 366–375 (1970).MATHMathSciNetGoogle Scholar
  11. 11.
    V. E. Voskresenskii, “On a weak approximation in algebraic groups”, In:Investigation on Number Theory [in Russian], Saratov Univ. Press, Saratov (1972), pp. 3–7.Google Scholar
  12. 12.
    V. E. Voskresenskii, “Invariant fields of Abelian groups”,Usp. Mat. Nauk,28, No. 4, 77–102 (1973).MATHMathSciNetGoogle Scholar
  13. 13.
    V. E. Voskresenskii, “The geometry of linear algebraic groups”,Tr. Mat. Inst. Akad. Nauk SSSR,132, 151–161 (1973).MATHMathSciNetGoogle Scholar
  14. 14.
    V. E. Voskresenskii, “Some problems on the birational geometry of algebraic tori”, In:Proc. Intern. Congress of Math., Vol. 1, Vancouver, Canada (1974), pp. 343–347.Google Scholar
  15. 15.
    V. E. Voskresenskii, “On the reduced Whitehead group of a simple algebra”,Usp. Mat. Nauk,32, No. 6, 247–248 (1977).MATHMathSciNetGoogle Scholar
  16. 16.
    V. E. Voskresenskii,Algebraic Tori [in Russian], Nauka, Moscow (1977).Google Scholar
  17. 17.
    V. E. Voskresenskii, “R-equivalency problems of semisimple groups”,Zapiski Nauchn. Semin. Leningr. Otd. MIAN SSSR,86, 49–65 (1979).MATHMathSciNetGoogle Scholar
  18. 18.
    V. E. Voskresenskii, “Demazure projective invariant models”,Izv. Akad. Nauk SSSR, Ser. Mat.,46, No. 2, 195–210 (1982).MATHMathSciNetGoogle Scholar
  19. 19.
    V. E. Voskresenskii, “Maximal tori without affect in semisimple algebraic groups”,Mat. Zametki,44, No. 3, 309–318 (1988).MATHMathSciNetGoogle Scholar
  20. 20.
    V. E. Voskresenskii, “On the computing of local volumes in the Siegel-Tamagawa formula”,Mat. Sb.,180, No. 4, 443–455 (1989).MATHMathSciNetGoogle Scholar
  21. 21.
    V. E. Voskresenskii, “On some volumes computing of classical fundamental domains of the group of integral matrices”,Tr. Mat. Inst. Akad. Nauk SSSR,183, 42–50 (1990).MATHMathSciNetGoogle Scholar
  22. 22.
    V. E. Voskresenskii and A. A. Klyachko, “Toric Fano manifolds and root systems”,Izv. Akad. Nauk SSSR, Ser. Mat.,48, No. 2, 237–263 (1984).MathSciNetGoogle Scholar
  23. 23.
    V. E. Voskresenskii and B. E. Kunyavskii, “On maximal tori in semisimple algebraic groups,” Deposited at VINITI 05.03.84 No. 1269 (1984).Google Scholar
  24. 24.
    V. I. Danilov, “The geometry of toric manifolds”,Usp. Mat. Nauk,33, No. 2, 83–134 (1978).MathSciNetGoogle Scholar
  25. 25.
    V. A. Emelichev, M. M. Kovalev, and M. K. Kravzov,Polytopes, Graphs, Optimization [in Russian], Nauka, Moscow (1981).Google Scholar
  26. 26.
    V. A. Iskovskikh, “Birational properties of a four-degree surface in ℙ4”,Mat. Sb.,88, 31–37 (1972).Google Scholar
  27. 27.
    P. I. Katsylo, “The rationality of moduli spaces of hyperelliptic curves”,Izv. Akad. Nauk SSSR, Ser. Mat.,48, No. 4, 705–710 (1984).MATHMathSciNetGoogle Scholar
  28. 28.
    A. A. Klyachko, “Demazure models of a special class of tori”, In:Seminar on Arithmetics of Algebraic Manifolds [in Russian], Saratov Univ. Press, Saratov (1979), pp. 32–37.Google Scholar
  29. 29.
    A. A. Klyachko, “On theK-theory of Demazure models”, In:Investigation on Number Theory [in Russian], Saratov Univ. Press, Saratov (1982), pp. 61–72.Google Scholar
  30. 30.
    A. A. Klyachko, “On the rationality of tori with a cyclic splitting field”, In:Arithmetics and Geometry of Manifolds [in Russian], Kuibyshev Univ. Press, Kuibyshev (1988), pp. 73–78.Google Scholar
  31. 31.
    A. A. Klyachko, “Tori without affect in semisimple groups”, In:Arithmetics and Geometry of Manifolds [in Russian], Kuibyshev Univ. Press, Kuibyshev (1989), pp. 67–78.Google Scholar
  32. 32.
    B. E. Kunyavskii, “On tori with a biquadratic splitting field”,Izv. Akad. Nauk SSSR, Ser. Mat.,42, No. 3, 580–587 (1978).MATHMathSciNetGoogle Scholar
  33. 33.
    B. E. Kunyavskii, “On the birational classification of small-dimension tori”, In:Seminar on Arithmetics of Algebraic Manifolds [in Russian], Saratov Univ. Press, Saratov (1979), pp. 37–42.Google Scholar
  34. 34.
    B. E. Kunyavskii, “Tori decomposable over a Galois extension with the groupS 3,” In:Investigation on Number Theory [in Russian], Saratov Univ. Press, Saratov (1982), pp. 72–74.Google Scholar
  35. 35.
    B. E. Kunyavskii, “On three-dimensional algebraic tori,” In:Investigation on Number Theory [in Russian], Saratov Univ. Press, Saratov (1987), pp. 90–111.Google Scholar
  36. 36.
    Yu. I. Manin, “Rational surfaces over perfect fields,”Publ. Math. IHES,30, 55–113 (1966).MATHMathSciNetGoogle Scholar
  37. 37.
    Yu. I. Manin,Cubic Forms [in Russian], Nauka, Moscow (1972).Google Scholar
  38. 38.
    A. P. Monastyrnyi, “Spinor quotient groups andR-equivalency,”Dokl. Akad. Nauk BSSR,35, No. 1, 9–13 (1991).MathSciNetGoogle Scholar
  39. 39.
    L. A. Nazarova, “Integral representations of the four-group,”Dokl. Akad. Nauk SSSR,140, No. 5, 1011–1014 (1961).MATHMathSciNetGoogle Scholar
  40. 40.
    V. I. Platonov, “The strong approximation problem and the Kneser-Tits hypothesis for algebraic groups,”Izv. Akad. Nauk SSSR, Ser. Mat.,33, No. 6, 1211–1219 (1969); supplement:34, No. 4, 775–777 (1970).MATHMathSciNetGoogle Scholar
  41. 41.
    V. I. Platonov, “On the Tannaka-Artin problem,”Dokl. Akad. Nauk SSSR,221, No. 5, 1038–1041 (1975).MATHMathSciNetGoogle Scholar
  42. 42.
    V. I. Platonov, “The Tannaka-Artin problem and the reducedK-theory,”Izv. Akad. Nauk SSSR, Ser. Mat.,40, No. 2, 227–262 (1976).MATHMathSciNetGoogle Scholar
  43. 43.
    V. I. Platonov and A. S. Rapinchuk,Algebraic Groups and Number Theory [in Russian], Nauka, Moscow (1991).Google Scholar
  44. 44.
    V. L. Popov, “Picard groups of homogeneous domains of linear algebraic groups and one-dimensional homogeneous vector bundles,”Izv. Akad. Nauk SSSR, Ser. Mat.,38, No. 2, 294–322 (1974).MATHMathSciNetGoogle Scholar
  45. 45.
    T. A. Springer, “Linear algebraic groups,” In:Sovremen. Probl. Mat. Fundament. Napravl. Vol. 55,Itogi Nauki i Tekhn., All-Union Institute for Scientific and Technical Information (VINITI), Akad. Nauk SSSR, Moscow (1989), pp. 5–136.Google Scholar
  46. 46.
    A. A. Suslin, “The algebraicK-theory and the norm residue homomorphism,” In:Soveremen. Probl. Mat. Noveishie Dostizheniya. Vol. 25,Itogi Nauki i Tekhn., All-Union Institute for Scientific and Technical Information (VINITI), Akad. Nauk SSSR, Moscow (1984), pp. 115–207.Google Scholar
  47. 47.
    V. I. Chernousov, “On the hasse principle for groups of theE 8 type,”Dokl. Akad. Nauk SSSR,306, No. 25, 1059–1063 (1989).MATHMathSciNetGoogle Scholar
  48. 48.
    A. L. Chistov, “On the birational equivalency of tori with a cyclic splitting field,”Zap. Nauch. Seminarov Leningr. Otd. Mat. Inst. Akad. Nauk SSSR,64, 153–158 (1976).MATHGoogle Scholar
  49. 49.
    A. L. Chistov, “On the number of generators of the algebraic tori class semigroup with respect to the stable equivalency,”Dokl. Akad. Nauk SSSR,242, No. 5, 1027–1029 (1978).MATHMathSciNetGoogle Scholar
  50. 50.
    I. R. Shafarevich,Fundamentals of Algebraic Geometry [in Russian], Nauka, Moscow (1972).Google Scholar
  51. 51.
    V. I. Yanchevskii, “The reduced unitaryK-theory. Applications to the algebraic group theory,”Mat. Sb.,110, No. 4, 579–596 (1979).MATHMathSciNetGoogle Scholar
  52. 52.
    J. Barge, “Cohomologies des groupes et corps d'invariants multiplicativs,”Math. Ann. (1989).Google Scholar
  53. 53.
    A. Beauville, J.-L. Colliot-Thélène, J.-J. Sansuc, and Sir Peter Swinnerton-Dyer, “Variétés stablement rationneles non rationneles,”Ann. Math.,121, 283–318 (1985).Google Scholar
  54. 54.
    C. Bessenrodt and L. Le Bruin “Stable rationality of certain PGL quotients,”Invent. Math.,104, 179–199 (1991).CrossRefMathSciNetGoogle Scholar
  55. 55.
    A. Borel, “Arithmetic properties of algebraic groups,”Proc. Intern. Congress Math. Stockholm (1962).Google Scholar
  56. 56.
    A. Borel,Linear Algebraic Groups, W. A. Benjamin, New York (1969).Google Scholar
  57. 57.
    J.-L. Brylinski, “Décomposition simplicale d'un réseau, invariante par un groupe fini d'automorphismes,”C. R. Acad. Sci., Paris. Sér. A,288, 137–139 (1979).MATHMathSciNetGoogle Scholar
  58. 58.
    H. Cartan and S. Eilenberg,Homological Algebra, Princeton Univ. Press, Princeton (1956).Google Scholar
  59. 59.
    C. Chevalley, “On algebraic group varieties,”J. Math. Soc. Jpn.,6, 303–324 (1954).MATHMathSciNetGoogle Scholar
  60. 60.
    J.-L. Colliot-Thélène and J.-J. Sansuc, “LaR-equivalence sur les tores,”Ann. Sci. École Norm. Sup.,10, No. 2, 175–230 (1977).Google Scholar
  61. 61.
    J.-L. Colliot-Thélène and J.-J. Sansuc, “Principal homogeneous spaces under flasque tori: applications,”J. Algebra,106, 148–205 (1987).MathSciNetGoogle Scholar
  62. 62.
    J.-L. Colliot-Thélène and J.-J. Sansuc, “La descente sur les variétés rationnelles,”Duke Math. J.,54, 375–492 (1987).MathSciNetGoogle Scholar
  63. 63.
    J.-L. Colliot-Thélène and J.-J. Sansuc, “The rationality problem for fields of invariants under linear algebraic groups,” IXEscuela Latinoamericana de Math., Santiago de Chile (1988).Google Scholar
  64. 64.
    J. H. Conway and N. J. A. Sloane, “The unimodular lattices of dimension up to 23 and Minkowski-Siegel mass constants,”Europ. J. Combinatorics,3, 219–231 (1982).MathSciNetGoogle Scholar
  65. 65.
    M. Demazure, “Sous-groupes algébriques de rang maximum du groupe de Cremona,”Ann. Sci. École Norm. Sup.,4, No. 3, 507–588 (1970).MATHMathSciNetGoogle Scholar
  66. 66.
    A. W. M. Dress, “The permutation class group of a finite group,”J. Pure Appl. Algebra,6, 1–12 (1975).CrossRefMATHMathSciNetGoogle Scholar
  67. 67.
    S. Endo and T. Miyata, “Invariants of finite Abelian groups”J. Math. Soc. Jpn.,25, 7–26 (1973).MathSciNetGoogle Scholar
  68. 68.
    S. Endo and T. Miyata, “Quasi-permutations modules over finite groups I,”J. Math. Soc. Jpn.,25, 397–421 (1973);, 698–713 (1974).MathSciNetGoogle Scholar
  69. 69.
    S. Endo and T. Miyata, “On a classification of the function fields on algebraic tori,”Nagoya Math. J.,56, 85–104 (1974).MathSciNetGoogle Scholar
  70. 70.
    S. Endo and T. Miyata, “On the projective class group of finite groups,”Osaka J. Math.,13, 109–122 (1976).MathSciNetGoogle Scholar
  71. 71.
    S. Endo and T. Miyata, “On the class group of dihedral groups,”J. Algebra,63, No. 2, 548–573 (1980).MathSciNetGoogle Scholar
  72. 72.
    S. Endo and T. Miyata, “Integral representations with trivial first cohomology groups,”Nagoya Math. J.,85, 231–240 (1982).MathSciNetGoogle Scholar
  73. 73.
    E. Formanek, “The center of 3×3 generic matrices,”Lin. Multilin. Alg.,7, 203–212 (1979).MATHMathSciNetGoogle Scholar
  74. 74.
    E. Formanek, “The center of 4×4 generic matrices,”J. Algebra,62, 304–319 (1980).CrossRefMATHMathSciNetGoogle Scholar
  75. 75.
    A. Grothendieck, “Le groupe de Brauer I, II, III” In:Dix Exposés sur la Cohomologie des Schémas, North-Holland, Amsterdam (1968), pp. 46–188.Google Scholar
  76. 76.
    A. Grothendieck and M. Demazure,SGA 3. Schémas en groupes. I, Springer, Berlin (1977).Google Scholar
  77. 77.
    J. Humphreys,Linear Algebraic Groups, Springer, Berlin (1975).Google Scholar
  78. 78.
    H. Hironaka, “Resolution of singularities of an algebraic variety over a field of characteristic zero,”Ann. Math.,79, 109–326 (1964).MATHMathSciNetGoogle Scholar
  79. 79.
    K. Hulek, “On the classification of stable rankr vector bundles over the projective plane,”Prog. Math.,7, 113–144 (1980).MATHMathSciNetGoogle Scholar
  80. 80.
    H. Jacobinski, “Genera and decompositions of lattices over orders,”Acta Math.,121, No. 1–2, 1–29 (1968).MATHMathSciNetGoogle Scholar
  81. 81.
    G. Kempf, F. Knudsen, D. Mumford, and B. Saint-Donat, “Toroidal embeddings. I,”Lect. Notes Math.,339, 1–309 (1973).MathSciNetGoogle Scholar
  82. 82.
    M. Kneser, “Galois-Kohomologie halbeinfacher algebraischer Gruppen überp-adischen Körpern,”Math. Z.,88, No. 1, 40–47 (1965);,89, No. 3, 250–272 (1965).MATHMathSciNetGoogle Scholar
  83. 83.
    R. E. Kottwitz, “Tamagawa numbers,”Ann. Math.,127, 629–646 (1988).MATHMathSciNetGoogle Scholar
  84. 84.
    B. E. Kunyavskii and A. N. Skorobogatov, “A criterion for weak approximation on linear algebraic groups,” In:Séminaire de Théorie de Nombres, Paris (1988–1989), pp. 215–217.Google Scholar
  85. 85.
    K. F. Lai, “Tamagawa numbers of reductive algebraic groups,”Compos. Math.,41, No. 2, 153–188 (1980).MATHGoogle Scholar
  86. 86.
    R. P. Langlands, “The volume of the fundamental domain for some arithmetical subgroups of Chevalley groups,”Proc. Symp. Pure Math.,9, 143–148 (1966).MATHMathSciNetGoogle Scholar
  87. 87.
    H. W. Lenstra, Jr., “Rational functions invariant under a finite Abelian group,”Invent. Math.,25, No. 3–4, 299–325 (1974).MATHMathSciNetGoogle Scholar
  88. 88.
    H. W. Lenstra, Jr., “Rational functions invariant under a cyclic group,”queen's Papers Pure Appl. Math.,54, 91 (1980).MATHMathSciNetGoogle Scholar
  89. 89.
    J. G. Mars, “Le nombres de Tamagawa de groupes semisimples,”Lect. Notes Math.,179, 79–94 (1971).Google Scholar
  90. 90.
    J. S. Milne,Étale Cohomology, Princeton Univ. Press, Princeton (1980).Google Scholar
  91. 91.
    K. Miyata, “Invariants of certain groups,”Nagoya Math. J.,41, 69–73 (1971).MATHMathSciNetGoogle Scholar
  92. 92.
    D. Mumford, “Abelian varieties,” In:Lect at the Tate Institute of Fundamental Research, Bombay (1968).Google Scholar
  93. 93.
    T. Nakayama, “Cohomology of class field theory and tensor product modules,”Ann. Math.,65, No. 2, 255–267 (1957).MathSciNetGoogle Scholar
  94. 94.
    T. Ono, “Arithmetic of algebraic tori,”Ann. Math.,74, 101–139, (1961).MATHGoogle Scholar
  95. 95.
    T. Ono, “On the Tamagawa number of algebraic tori,”Ann. Math.,78, 47–73 (1963).MATHGoogle Scholar
  96. 96.
    T. Ono, “On the relative theory of Tamagawa numbers,”Ann. Math.,82, 88–111 (1965).MATHGoogle Scholar
  97. 97.
    C. Procesi, “Non-commutative affine rings,”Atti Accad. Naz. Lincei, VIII. Ser., v. VIII,6, 239–255 (1967).Google Scholar
  98. 98.
    M. Rosenlicht, “Some basic theorems on algebraic groups,”Am. J. Math.,78, 401–443 (1956).MATHMathSciNetGoogle Scholar
  99. 99.
    D. J. Saltman, “Noether's problem over an algebraically closed field,”Invent. Math.,77, 71–84 (1984).CrossRefMATHMathSciNetGoogle Scholar
  100. 100.
    D. J. Saltman, “The Brauer group and the center of generic matrices,”J. Algebra,97, 53–67 (1985).CrossRefMATHMathSciNetGoogle Scholar
  101. 101.
    D. J. Saltman, “Multiplicative field invariants,”J. Algebra,106, 221–238 (1987).CrossRefMATHMathSciNetGoogle Scholar
  102. 102.
    J.-J. Sansuc, “Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres,”J. reine angew. Math.,327, 12–80 (1981).MATHMathSciNetGoogle Scholar
  103. 103.
    A. Schofield, “Matrix invariants of composite size,” Preprint (1989).Google Scholar
  104. 104.
    B. Segre, “Sur un problème de M. Zariski,” In:Colloque internat. d'algebre et de théorie des nombres, Paris (1950), pp. 135–138.Google Scholar
  105. 105.
    J.-P. Serre, “Cohomologie galoisienne,”Lect. Notes Math. (1964).Google Scholar
  106. 106.
    R. G. Swan, “Induced representations and projective modules,”Ann. Math.,71, 552–572 (1960).MATHMathSciNetGoogle Scholar
  107. 107.
    R. G. Swan, “Invariant rational functions and a problem of Steenrod,”Invent. Math.,7, 148–158 (1969).CrossRefMATHMathSciNetGoogle Scholar
  108. 108.
    M. Van den Bergh, “The center of the generic division algebra,”J. Algebra,127, No. 1, 106–126 (1989).MATHMathSciNetGoogle Scholar
  109. 109.
    B. L. Van der Waerden,Algebra, Springer, Berlin (1971).Google Scholar
  110. 110.
    A. Weil, “The field of definition of a variety,”Am. J. Math.,78, 509–524 (1956).MATHMathSciNetGoogle Scholar
  111. 111.
    A. Weil,Adeles and Algebraic Groups, Inst. of Adv. Stud. Press, Princeton (1961).Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • V. E. Voskresenskii

There are no affiliations available

Personalised recommendations