Behavior Genetics

, Volume 26, Issue 5, pp 477–488 | Cite as

Selective breeding for isolation-induced intermale aggression in mice: Associated responses and environmental influences

  • N. Kenneth Sandnabba


Aggressive (TA) and nonaggressive (TNA) lines of mice were established by selective breeding for isolation-induced intermale aggression. This paper summarizes and updates studies performed on the TA and TNA lines. The genetic analysis revealed that in these lines the genes for aggression are located on the autosomes and demonstrate a Mendelian segregation. The genes are expressed only in the presence of androgens which are normally present only in males. Behavioral and biological responses associated with high and low levels of aggression in TA and TNA mice are reviewed. Line differences have been found in olfactory communication and marking behavior, in maternal and predatory aggression in females, in locomotor activity, and in learning abilities. Also, correlated neurochemical and endocrinological responses to the selection have been detected. Maternal factors during the preweaning period do not significantly affect the development of aggression in TA and TNA males, while early postweaning exposure to aggression or sex enhanced later aggressive and sexual activity. Early experience and genetic disposition for aggression are correlated, with TA males showing the greatest increase in the behaviors studied.

Key Words

Aggression selective breeding heritability Y chromosome genetic correlation olfaction exploratory activity maternal aggression predatory aggression sexual behavior testosterone serotonin cathecholamines crossbreeding early experience mouse 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Apps, P. J., Rasa, A., and Viljoen, H. W. (1988). Quantitative chromatographic profiling of odours associated with dominance in male laboratory mice.Aggress. Behav. 14:451–461.Google Scholar
  2. Archer, J. (1973). Tests for emotionality in rats and mice: A review.Anim. Behav. 21:205–235.PubMedGoogle Scholar
  3. Beilharz, R. G., and Beilharz, V. C. (1975). Observations on fighting behaviour of male mice (Mus musculus L.),Z. Tierpsych. 339:126–140.Google Scholar
  4. Benus, R. F., Bohus, B., Koolhaas, J. M., and van Oortmerssen, G. A. (1991). Heritable variation for aggression as a reflection of individual coping strategies.Experientia 47: 1008–1019.CrossRefPubMedGoogle Scholar
  5. Bourgault, P. C., Karczmar, A. G., and Scudder, C. L. (1963). Contrasting behavioral, pharmacological, neurophysiological, and biochemical profiles of C57BL/6 and SC-I strains of mice.Life Sci. 8:533–553.PubMedGoogle Scholar
  6. Brain, P. F. (1978).Hormones and Aggression, Annual Research Reviews, Vol. 1, Eden Press, Montreal.Google Scholar
  7. Brain, P. F. (1979). Effects of hormones of the pituitary-adrenocortical axis on behaviour. In Brown, K., and Cooper, S. J. (eds.),Chemical Influences on Behaviour, Academic Press, London, pp. 329–371.Google Scholar
  8. Brain, P. F. (1979).Mindness Violence? The Nature and Biology of Aggression. Univ. Coll. Swansea Press, Swansea.Google Scholar
  9. Brain, P. F., and Al-Maliki, S. (1979). A comparison of effects of simple experimental manipulations of fighting generated by breeding activity and predatory aggression in TO strain mice.Behaviour 59:183–200.Google Scholar
  10. Brain, P. F., and Kamal, K. H. (1990). Effects of prior social experiences on individual aggressiveness in laboratory rodents.Rass. Psicol. 6:37–44.Google Scholar
  11. Brain, P. F., Goldsmith, J. F., Parmigiani, S., and Mainardi, M. (1982). Involvement of various senses in responses to individual housing in laboratory albino mice. I. The olfactory sense.Boll. Zool. 49:213–222.Google Scholar
  12. Brain, P. F., Homady, M. H., Castano, D., and Parmigiani, S. (1987). “Pheromones” and behaviour of rodents and primates.Boll. Zool. 4:279–288.Google Scholar
  13. Bronson, F. H., and Desjardins, C. (1971). Steroid hormones and aggressive behaviour in mammals. In Eleftheriou, B., and Scott, J. P. (eds.),The Physiology of Aggression and Defeat. Plenum Press, London, pp. 59–124.Google Scholar
  14. Bronson, F. D. H., and Rissman, E. F. (1986). The biology of puberty.Biol. Rev. 61:157–159.PubMedGoogle Scholar
  15. Cairns, R. B. (1976). The ontogeny and phylogeny of social behavior. In Hahn, M. E., and Simmel, E. C. (eds.),Evolution and Communicative Behavior. Academic Press, San Diego, pp. 115–139.Google Scholar
  16. Cairns, R. B., MacCombie, D. J., and Hood, K. E. (1983). A developmental-genetic analysis of aggressive behavior in mice. I. Behavioral outcomes.J. Comp. Psychol. 97:69–89.PubMedGoogle Scholar
  17. Carlier, M., Roubertoux, P. L., and Degrelle, H. (1990). Y chromosome and aggression in strains of laboratory mice.Behav. Genet. 20:137–156.PubMedGoogle Scholar
  18. Carlier, M., Roubertoux, P. L. and Pastoret, U. (1991). The Y chromosome effect on intermale aggression in mice depends on the maternal environment.Genetics 129:231–236.PubMedGoogle Scholar
  19. Compaan, J. C., de Ruiter, A. J. H., and Koolhaas, J. M. (1992). Differential effects of neonatal testosterone treatment on aggression in two selection lines of mice.Physiol. Behav. 51:7–10.CrossRefPubMedGoogle Scholar
  20. Compaan, J. C., van Wattum, G., and de Ruiter, A. J. H. (1993). Genetic differences in female house mice in aggressive response to sex steroid hormone treatment.Physiol. Behav. 54:899–902.CrossRefPubMedGoogle Scholar
  21. Crusio, W. E. (1992). Quantitative genetics. In Goldowitz, D., and Winer, R. E. (eds.),Techniques for the Genetic Analysis of Brain and Behavior, Elsevier Science, Amsterdam, pp. 231–250.Google Scholar
  22. Ebert, P. D. (1983). Selection for aggression in a natural population. In Simmel, E. C., Hahn, M., and Walters, J. K. (eds.),Aggressive Behavior: Genetic and Neural Approaches. Lawrence Erlbaum, Hillsdale: NJ, pp. 103–127.Google Scholar
  23. Ebert, P. D., and Hyde, J. S. (1976). Selection for agonistic behavior in wild female Mus musculus.Behav. Genet. 6: 291–304.CrossRefPubMedGoogle Scholar
  24. Endrozi, E., Lissak, K., and Telegdy, G. (1958). The influence of sexual and androcorticol hormones on maternal aggressivity.Acta Physiol. Hung. 15:353–357.Google Scholar
  25. Erskine, M. S., Barfield, R. J., and Goldman, D. B. (1978). Intra-specific fighting during late pregnancy and lactation in rats and effects of litter removal.Behav. Biol. 23:206–218.PubMedGoogle Scholar
  26. Flandera, V., and Novakova, V. (1971). The development of inter-specific aggression of rats towards mice during lactation.Physiol. Behav. 6:161–164.CrossRefPubMedGoogle Scholar
  27. Flannelly, K. J., Flannelly, L., and Lore, D. (1986). Postpartum aggression against intruding male conspecifics in Sprague-Dawley rats.Behav. Process. 13:279–286.Google Scholar
  28. Fuller, J. L., and Hahn, M. E. (1976). Issues in the genetics of social behavior.Behav. Genet. 6:391–406.CrossRefPubMedGoogle Scholar
  29. Fuller, J. L., and Thompson, W. R. (1978).Foundations of Behavior Genetics, Mosby, St. Louis, MO.Google Scholar
  30. Gariépy, J. L., Lewis, M. H., and Cairns, R. B. (1996). Genes, neurobiology, and aggression: Time frame and functions of social behaviors in adaptation. In Stoff, D. M., and Cairns, R. B. (eds.),Aggression and Violence: Neurobiological Biosocial and Genetic Perspectives. Lawrence Erlbaum, New York (in press).Google Scholar
  31. Hahn, E. M., and Haber, S. B. (1982). The inheritance of agonistic behavior in male mice: A diallel analysis.Aggress. Behav. 8:19–38.Google Scholar
  32. Hahn, E. M., and Simmel, E. C. (1968). Individual recognition by natural concentrations of olfactory cues in mice.Psychon. Sci. 12:183–184.Google Scholar
  33. Haug, M., Brain, P. F., and Kamis, A. B. (1986). A brief review comparing the effects of sex steroids on two forms of aggression in laboratory mice.Neurosci. Behav. Rev. 10:463–468.Google Scholar
  34. Hoffman, H. J., Schneider, R., and Crusio, W. E. (1993). Genetic analysis of isolation-induced aggression. II. Postnatal environmental influences in AB mice.Behav. Genet. 23:391–394.Google Scholar
  35. Hood, K. E., and Cairns, R. B. (1988). A developmental-genetic analysis of aggressive behavior in mice. II Crosssex inheritance.Behav. Genet. 18:605–619.CrossRefPubMedGoogle Scholar
  36. Jones, R. B., and Nowell, N. W. (1989). Aversive potency of urine from dominant and subordinate male laboratory mice (Mus musculus): Resolution of conflict.Aggress. Behav. 15:291–296.Google Scholar
  37. Jutley, J. K., and Stewart, A. D. (1985). Genetic analysis of the Y-chromosome of the mouse: Evidence for two loci affecting androgen metabolism.Genet. Res. Cambr. 47: 29–34.Google Scholar
  38. Kahn, M. W. (1951). The effect of severe defeat at various age levels on the aggressive behavior of mice.J. Genet. Psychol. 79:117–130.PubMedGoogle Scholar
  39. Kalkowski, W. (1968). Visual control of social environment in the white mouse.Fol. Biol. 16:215–233.Google Scholar
  40. Korpela, S. R., and Sandnabba, N. K. (1994). Gender-specific social experiences and the development of aggressive and sexual behavior in male mice.Aggress. Behav. 20:123–134.Google Scholar
  41. Kvist, B. (1989). Learning in mice selectively bred for high and low aggressiveness.Psychol. Rep. 64:127–130.PubMedGoogle Scholar
  42. Kvist, B. (1992). Aggressive female mice and learning-sensitive open-field parameters. In Björkqvist, K., and Niemelä, P. (eds.),Of Mice and Women, Aspects of Female Aggression, Academic Press, San Diego, pp. 351–366.Google Scholar
  43. Lagerspetz, K. M. J. (1961). Genetic and social causes of aggressive behavior in mice.Scand. J. Psychol. 2:167–173.Google Scholar
  44. Lagerspetz, K. M. J. (1964). Studies on the aggressive behaviour of mice.Ann. Finnish Acad. Sci. B 131:3.Google Scholar
  45. Lagerspetz, K. M. J., and Lagerspetz, K. Y. H. (1971). Changes in aggresiveness of mice resulting from selective breeding, learning and social isolation.Scand. J. Psychol. 12:241–248.PubMedGoogle Scholar
  46. Lagerspetz, K. M. J., and Lagerspetz, K. Y. H. (1975). The expression of the genes of aggressiveness in mice: The effect of androgen on aggression and sexual behavior in females.Aggress. Behav. 1:291–296.Google Scholar
  47. Lagerspetz, K. M. J., and Lagerspetz, K. Y. H. (1983). Genes and aggression. In Simmel, E. C., and Hahn, M. (eds.),Aggressive Behavior: Genetic and Neural Approach. Erlbaum, Hillsdale: NJ, pp. 89–101.Google Scholar
  48. Lagerspetz, K. M. J., and Sandnabba, N. K. (1982). The decline of aggressiveness in male mice during group caging as determined by punishment delivered by the cage mates.Aggress. Behav. 8:319–334.Google Scholar
  49. Lagerspetz, K. M. J., and Wuorinen, K. (1965). A cross-fostering experiment with mice selectively bred for aggressiveness and non-aggressiveness.Rep. Inst. Psychol. Univ. Turku 17:1–6.Google Scholar
  50. Lagerspetz, K. Y. H., Tirri, R., and Lagerspetz, K. M. J. (1968). Neurochemical and endocrinological studies of mice selectively bred for aggressiveness.Scand. J. Psych. 9:157–160.Google Scholar
  51. Lloyd, J. A. (1971). Weights of testes, thymi, and accessory reproductive glands in relation to rank in paired and grouped mice.Proc. Soc. Exp. Biol. Med. 137:19–21.PubMedGoogle Scholar
  52. Mackintosh, J. H. (1970). Territory formation by laboratory mice.Anim. Behav. 18:177–183.CrossRefGoogle Scholar
  53. Mather, K., and Jinks, J. L. (1977).Introduction to Biometrical Genetics, Chapman and Hall, London.Google Scholar
  54. Maxson, S. C. (1981). The genetics of aggression in vertebrates. In Brain, P. F., and Benton, D. (eds.),The Biology of Aggression, Sijthoff and Noordhoff, Alphen aan den Rijn, pp. 69–104.Google Scholar
  55. Maxson, S. C., Didier-Erickson, A., and Ogawa, S. (1989). The Y chromosome, social signals, and offense in mice.Behav. Neural Biol. 52:251–259.PubMedGoogle Scholar
  56. Maxson, S. C., Ginsburg, B. E., and Trattner, A. (1979). Interaction of Y-chromosomal and autosomal gene(s) in the development of intermale aggression in mice.Behav. Genet. 9:219–226.CrossRefPubMedGoogle Scholar
  57. Maxson, S. C., Schrenker, P., and Vigue, L. C. (1983). Genetics, hormones, and aggression. In Svare, B. B. (ed.),Hormones and Aggressive Behavior, Plenum Press, New York, pp. 179–196.Google Scholar
  58. McClearn, G. E., (1981). Current perspectives on selective breeding: Introduction. In McClearn, G. E., Deitrich, R. A., and Erwin, V. G. (eds.),Development of Animal Models as Pharmacogenetic Tools, NIAAA Research Monograph, Rockville, MD, pp. 3–10.Google Scholar
  59. McClearn, G. E., and DeFries, J. C. (1973).Introduction to Behavioral Genetics, Freeman, San Francisco.Google Scholar
  60. McKinney, T. D., and Desjardins, C. (1973). Intermale stimuli and testicular function in adult and immature house mice.Biol. Reprod. 9:370–378.PubMedGoogle Scholar
  61. Mettälä, R. (1965). A factorial study of the behavior of mce in simulation experiments eliciting aggressive responses.Rep. Inst. Psychol. Univ. Turku 15:1–9.Google Scholar
  62. Michard-Vanhée, C. (1988). Aggressive behavior induced in female mice by an early single injection of testosterone is genotype dependent.Behav. Genet. 18:1–12.CrossRefPubMedGoogle Scholar
  63. Michard-Vanhée, C., and Roubertoux, P. (1990). Genetic analysis of differences in behavioral reactivity to neonatal injection of testosterone in female mice.Behav. Genet. 20: 63–71.PubMedGoogle Scholar
  64. Miczek, K. A., and Donat, P. (1989). Brain 5-HT system and inhibition of aggressive behaviour. In Bevan, P., Cools, A. R., and Archer, T. (eds.),Behavioural Pharmacology of 5-HT, LEA, London.Google Scholar
  65. Monahan, E., Yamazaki, K., Beauchamp, G. K., and Maxson, S. C. (1993). Olfactory discrimination of urinary odortypes from congenic strains (DBA/1Bg and DBA1.C57BL10-YBg) of mice differing in their Y chromosomes.Behav. Genet. 23:251–254.CrossRefPubMedGoogle Scholar
  66. Moyer, K. E. (1976).The Psychobiology of Aggression, Harper & Row, New York.Google Scholar
  67. Nikulina, E. M., and Popova, N. K. (1988). Predatory aggression in the mink (Mustela vision): Role of serotonin and food satiation.Agress. Behav. 14:77–84.Google Scholar
  68. Novikov, S. N. (1993). The genetics of pheromonally mediated intermale aggression in mice: Current status and prospects of the model.Behav. Genet. 23:505–508.CrossRefPubMedGoogle Scholar
  69. Novotny, M., Jemiolo, B., and Harvey, S. (1990). Chemistry of rodent pheromones: Molecular insights into chemical signalling in mammals. In Macdonald, D. W., Müller-Schwarze, D., and Natynczuk, S. E. (eds.),Chemical Signals in Vertebrates, Vol. 5, Oxford University Press, Oxford, pp. 459–464.Google Scholar
  70. Olivier, B., Mos, J., Tulp, M., Schipper, den Daas, S., and van Oortmerssen, G. (1990). Serotonergic involvement in aggressive behavior in animals. In van Praag, H. M., Plutchik, R., and Apter, A. (eds.),Violence and Suicidality, Perspectives in Clinical and Psychobiological Research, Brunner/Mazel, New York, pp. 79–137.Google Scholar
  71. Roubertoux, P. L., Carlier, M. and Degrelle, H. (1994). Cosegregation of intermale aggression with the pseudoautosomal region of the Y chromosome in mice.Genetics 32:225–230.Google Scholar
  72. Sandnabba, N. K. (1985). Differences in the capacity of male odours to affect investigatory behaviour and different urinary patterns in two strains of mice, selectively bred for high and low aggressiveness.Behav. Process. 11:257–267.Google Scholar
  73. Sandnabba, N. K. (1986a). Heredity, fighting experience and odour cues: Factors detemining the aggressive interaction in mice. Rep. Dept. Psychol. Åbo Akad., Monogr. Suppl. 3.Google Scholar
  74. Sandnabba, N. K. (1986b). Changes in male odours and urinary marking patterns due to inhibition of aggression in male mice.Behav. Process. 12:349–361.Google Scholar
  75. Sandnabba, N. K. (1986c). Differences between two strains of mice, selectively bred for high and low aggressiveness, in the capacity of male odors to affect aggressive behavior.Aggress. Behav. 12:103–110.Google Scholar
  76. Sandnabba, N. K. (1986d). Effects of selective breeding for high and low aggressiveness and of fighting experience on odor discrimination in mice.Aggress. Behav. 12:359–366.Google Scholar
  77. Sandnabba, N. K. (1990). Differences between aggressive and non-aggressive mice in odour signals and marking behaviour. In Macdonald, D. W., Müller-Schwarze, D., and Natynczuk, S. E. (eds.),Chemical Signals in Vertebrates, Vol. 5, Oxford University Press, Oxford, pp. 459–464.Google Scholar
  78. Sandnabba, N. K. (1992a). Aggressive behavior in female mice as a correlated characteristic in selection for aggressiveness in male mice. In Björkqvist, K., and Niemelä, P. (eds.),Of Mice and Women, Aspects of Female Aggression, Academic Press, San Diego, pp. 367–379.Google Scholar
  79. Sandnabba, N. K. (1992b). Odor discrimination in female mice after long-term exposure to male odors: Genotype-environment interaction. In Doty, R. L., and Müller-Schwarze, D. (eds.),Chemical Signals in Vertebrates, Vol. 6 Plenum Press, New York, pp. 509–513.Google Scholar
  80. Sandnabba, N. K. (1993a). Female aggression during gestation and lactation in two strains of mice selected for isolationinduced intermale aggression.Behav. Process. 30:157–164.Google Scholar
  81. Sandnabba, N. K. (1993b). Effects of early exposure to intermale aggression on the aggressiveness of adult male mice varying in their genetic disposition for aggressive behavior.Aggress. Behav. 19:435–445.Google Scholar
  82. Sandnabba, N. K. (1995a). Predatory aggression in male mice selectively bred for isolation-induced intermale aggression.Behav. Genet. 25:361–366.CrossRefPubMedGoogle Scholar
  83. Sandnabba, N. K. (1995b). Predatory behavior in females of two strains of mice selectively bred for isolation-induced intermale aggression.Behav. Process. 32:93–100.Google Scholar
  84. Sandnabba, N. K., and Korpela, S. R. (1994). Effects of early exposure to mating on adult sexual behavior in male varying in their genetic disposition for aggressive behavior.Aggress. Behav. 20:429–439.Google Scholar
  85. Sandnabba, N. K., Lagerspetz, K. M. J., and Jensen, E. (1994). Effects of testosterone exposure and fighting experience on the aggressive behavior of female and male mice selectively bred for intermale aggression.Horm. Behav. 28: 219–231.CrossRefPubMedGoogle Scholar
  86. Schneider, R., Hoffman, H. J., Schicknick, H., and Moutier, R. (1992). Genetic analysis of isolation induced aggression. I. Comparison between closely related inbred mouse strains.Behav. Neural Biol. 57:198–204.PubMedGoogle Scholar
  87. Selander, R. K., and Kvist, B. M. (1991). Open-field parameters and maze learning in aggressive and nonaggressive male mice.Percept. Motor Skills 73:811–824.PubMedGoogle Scholar
  88. Sluyter, F., van Oortmerssen, G. A., and Koolhaas, J. P. (1994). Studies on wild house mice. VI. Differential effects of the Y chromosome on intermale aggression.Aggress. Behav. 20:379–386.Google Scholar
  89. St. John, R. S., and Corning, P. A. (1973). Maternal aggression in mice.Behav. Biol. 9:635–639.PubMedGoogle Scholar
  90. Vale, J. R., Ray, D., and Vale, C. A. (1972). The interaction of genotype and exogenous neonatal androgen: Agonistic behavior in female mice.Behav. Biol. 7:321–334.CrossRefPubMedGoogle Scholar
  91. van Oortmerssen, G. A., and Bakker, T. M. C. (1981). Artificial selection for short and long attack latencies in wildMus musculus domesticus.Behav. Genet. 11:115–126.CrossRefPubMedGoogle Scholar
  92. van Oortmerssen, G. A., and Sluyter, F. (1994). Studies on wild house mice. V. Aggression in lines selected for attack latency and their Y-chromosomal congenics.Behav. Genet. 24:73–78.CrossRefPubMedGoogle Scholar
  93. Whitney, G., McClearn, G. E., and DeFries, J. C. (1970). Heritability of alcohol preference in laboratory mice and rats.J. Hered. 61:165–169.PubMedGoogle Scholar
  94. Whitney, G., Alpern, M., Dizinno, G., and Aorowitz, G. (1974). Female odors evoke ultrasounds from male mice,Anim. Learn. Behav. 2:13–18.PubMedGoogle Scholar
  95. Yamaguchi, M., Yamazaki, K., Beauchamp, G. K., Bard, J., Thomas, L., and Boyse, E. A. (1981). Distinctive urinary odors governed by the major histocompatibility locus of the mouse.Proc. Natl. Acad. Sci. USA 78:5817–5820.PubMedGoogle Scholar
  96. Yamazaki, K., Beauchamp, G. K., Matsuzaki, O., Bard, J., Thomas, L., and Boyse, E. A. (1986). Participation of murine X and Y chromosomes in genetically determined chemosensory identity.Proc. Natl. Acad. Sci. USA 83: 4438–4440.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • N. Kenneth Sandnabba
    • 1
  1. 1.Department of PsychologyÅbo Akademi UniversityTurku-ÅboFinland

Personalised recommendations