Behavior Genetics

, Volume 26, Issue 3, pp 301–312 | Cite as

The use of null mutant mice to study complex learning and memory processes

  • Jeanne M. Wehner
  • Barbara J. Bowers
  • Richard Paylor
Article

Abstract

A number of neural substrates have been proposed to mediate complex learning and memory processes in mammalian organisms. One strategy for testing the involvement of a particular gene in learning and memory is to create a mouse line with a null mutation in that gene. Recently, embryonic stem cell-based gene-targeted homologous recombination techniques have been employed to create a number of such mutant mouse lines that do not express interesting candidate genes. These animals have been examined for impairments in several complex learning paradigms which are known to depend on the integrity of the hippocampus. In this review several complex learning and memory paradigms are described, the techniques to create null mutants are reviewed, and the results of recent studies with null mutants are described. Finally, the limitations for interpretation of behavioral data using null mutants are discussed.

Key Words

Complex learning hippocampus null mutants protein kinase C Ca2+/calmodulin kinase II transcriptional factors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abeliovich, A., Chen, C., Goda, Y., Silva, A. J., Stevens, C. F., and Tonegawa, S. (1993a). Modified hippocampal long term potentiation in PKCγ mutant mice.Cell 75: 1253–1262.PubMedGoogle Scholar
  2. Abeliovich, A., Paylor, R., Chen, C., Kim, J. J., Wehner, J. M., and Tonegawa, S. (1993b). PKCγ mutant mice exhibit mild deficits in spatial and contextual learning.Cell 75:1263–1271.PubMedGoogle Scholar
  3. Akers, R. F., Lovinger, D. M., Colley, P. A., Linder, D. J., and Routtenberg, A. (1986). Translocation of protein kinase C activity may mediate hippocampal long-term potentiation.Science 231:587–589.PubMedGoogle Scholar
  4. Anokhin, K. V., and Rose, S. P. R. (1991). Learning-induced increase of immediate early gene messenger RNA in the chick forebrain.Eur. J. Neurosci. 3:162–167.PubMedGoogle Scholar
  5. Armstrong, R. C., and Montminy, M. R. (1993). Transsynaptic control of gene expression. In Cowan, W. M., Shooter, E. M., Stevens, C. F., and Thompson, R. F. (eds.),Annual Review of Neuroscience, Annual Reviews Inc., Palo Alto, CA, Vol. 16, pp. 17–30.Google Scholar
  6. Bank, B DeWeer, A., Kuzirian, A. M., Rasmussen, H., and Alkon, D. L. (1988). Classical conditioning induces long-term translocation of protein kinase C in rabbit hippocampal CA1 cells.Proc. Natl. Acad. Sci. USA 85:1988–1992.PubMedGoogle Scholar
  7. Bank, B., LoTurco, J. J., and Alkon, D. L. (1989). Learning-induced activation of protein kinase C. A molecular memory trace.Mol. Neurobiol. 3:55–70.PubMedGoogle Scholar
  8. Bradley, A. (1993). Site-directed mutagenesis in the mouse.Recent Prog. Hormone Res. 48:237–251.Google Scholar
  9. Brandt, S. J., Niedel, J. E., Bell, R. M., and Young, W. S., III (1987). Distinct patterns of expression of different protein kinase C mRNAs in rat tissues.Cell 49:57–63.CrossRefPubMedGoogle Scholar
  10. Büeler, H., Fischer, M., Lang, Y., Bluethmann, H., Lipp, H.-P., DeArmond, S. J., Prusiner, S. B., Aguet, M., and Weissmann, C. (1992). Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein.Nature 356:577–582.CrossRefPubMedGoogle Scholar
  11. Burgin, K. E., Waxham, M. N., Rickling, S., Westgate, S. A., Mobley, W. C., and Kelly, P. T. (1990).In situ hybridization histochemistry of Ca2+/calmodulin-dependent protein kinase in developing rat brain.J. Neurosci. 10:1788–1798.PubMedGoogle Scholar
  12. Byrne, G. W., and Ruddle, F. H. (1989). Multiplex gene regulation: A two-tiered approach to transgene regulation in transgenic mice.Proc. Natl. Acad. Sci. USA 86:5473–5477.PubMedGoogle Scholar
  13. Capecchi, M. R. (1989). Altering the genome by homologous recombination.Science 244:1288–1292.PubMedGoogle Scholar
  14. Cohen, N. J., and Squire, L. R. (1980). Preserved learning and retention of pattern-analyzing skill in amnesia: Dissociation of knowing how and knowing that.Science 210:207–209.PubMedGoogle Scholar
  15. Cole, A. J., Saffen, D. W., Baraban, J. M., and Worley, P. F. (1989). Rapid increase of an immediate early gene messenger RNA in hippocampal neurons by synaptic NMDA receptor activation.Nature 340:474–476.CrossRefPubMedGoogle Scholar
  16. Costantini, F., and Lacy, E. (1981). Introduction of a rabbit β-globin gene into the mouse germ line.Nature 294:92–94.CrossRefPubMedGoogle Scholar
  17. Eichenbaum, H., Fagan, A., and Cohen, N. J. (1986). Normal olfactory discrimination learning set and facilitation of reversal learning after combined and separate lesions of the fornix and amygdala in rats: Implications for preserved learning in amnesia.J. Neurosci. 6:1876–1884.PubMedGoogle Scholar
  18. Eichenbaum, H., Mathews, P., and Cohen, N. J. (1989). Further studies of hippocampal representation during odor discrimination learning.Behav. Neurosci. 103:1207–1216.CrossRefPubMedGoogle Scholar
  19. Eichenbaum, H., Otto, T., and Cohen, N. J. (1992). The hippocampus—What does it do?Behav. Neural Bio. 57:2–36.Google Scholar
  20. Fordyce, D. E., and Wehner, J. M. (1993). Effects of aging on spatial learning and hippocampal protein kinase C in mice.Neurobiol. Aging 14:309–317.CrossRefPubMedGoogle Scholar
  21. Freeman, J. H., and Stanton, M. E. (1991). Fimbria-fornix transections disrupt the ontogeny of delayed alternation but not position discrimination in the rat.Behav. Neurosci. 105:386–395.CrossRefPubMedGoogle Scholar
  22. Grant, S. G. N., O'Dell, T. J., Karl, K. A., Stein, P. L., Soriano, P., and Kandel, E. R. (1992). Impaired long-term potentiation, spatial learning, and hippocampal development infyn mutant mice.Science 258:1903–1910.PubMedGoogle Scholar
  23. Hashimoto, T., Ase, K., Sawamura, S., Kikkawa, U., Saito, N., Tanaka, C., and Nishizuka, Y. (1988). Postnatal development of a brain-specific subspecies of protein kinase C in rat.J. Neurosci. 8:1678–1683.PubMedGoogle Scholar
  24. Hasty, P., Ramirez-Solis, R., Krumlauf, R., and Bradley, A. (1991). Introduction of a subtle mutation into theHox-2.6 locus in embryonic stem cells.Nature 350:243–246.CrossRefPubMedGoogle Scholar
  25. Hawkins, R. D., Kandel, E. R., and Siegelbaum, S. A. (1993). Learning to modulate transmitter release: Themes and variations in synaptic plasticity. In Cowan, W. M., Shooter, E. M., Stevens, C. F., and Thompson, R. F. (eds.),Annual Review of Neuroscience, Annual Reviews Inc., Palo Alto, CA, Vol. 16, pp. 625–665.Google Scholar
  26. Hirsh, R. (1974). The hippocampus and contextual retrieval of information from memory: A theory.Behav. Biol. 12: 421–444.CrossRefPubMedGoogle Scholar
  27. Jaenisch, R., and Mintz, B. (1974). Simian virus 40 DNA sequences in DNA of healthy adult mice derived from preimplantation blastocysts injected with viral DNA.Proc. Natl. Acad. Sci. USA 71:1250–1254.PubMedGoogle Scholar
  28. Jaenisch, R., Harbers, K., Schnieke, A., Löhler, J., Chumakov, I., Jähner, D., Grotkopp, D., and Hoffmann, E. (1983). Germline integration of Moloney murine leukemia virus at theMov13 locus leads to recessive lethal mutation and early embryonic death.Cell 32:209–216.PubMedGoogle Scholar
  29. Jarrard, L. E. (1983). Selective hippocampal lesions and behavior: Effects of kainic acid lesions on performance of place and cue tasks.Behav. Neurosci. 97:873–889.PubMedGoogle Scholar
  30. Jarrard, L. E. (1993). On the role of the hippocampus in learning and memory in the rat.Behav. Neural Biol. 60:9–26.PubMedGoogle Scholar
  31. Johnson, R. S., Spiegelman, B. M., and Papaioannou, V. (1992). Pleiotropic effects of a null mutation in the c-fos protooncogene.Cell 71:577–586.CrossRefPubMedGoogle Scholar
  32. Joyner, A. L., Skarnes, W. C., and Rossant, J. (1989). Production of a mutation in mouseEn-2 gene by homologous recombination in embryonic stem cells.Nature 338:153–155.CrossRefPubMedGoogle Scholar
  33. Kennedy, M. B., Bennett, M. K., Bulleit, R. F., Erondu, N. E., Jennings, V. R., Miller, S. G., Molloy, S. S., Patton, B. L., and Schenker, L. J. (1990). Structure and regulation of type II calcium/calmodulin-dependent protein kinase in central nervous system neurons.Cold Spring Harbor Symp. Quant. Biol. LV:101–110.Google Scholar
  34. Kim, J. J., and Fanselow, M. S. (1992). Modality-specific retrograde amnesia of fear.Science 256:675–677.PubMedGoogle Scholar
  35. Koller, B. H., and Smithies, O. (1989). Inactivating the β2-microglobulin locus in mouse embryonic stem cells by homologous recombination.Proc. Natl. Acad. Sci. USA 86:8932–8935.PubMedGoogle Scholar
  36. Kose, A., Ito, A., Saito, N., and Tanaka, C. (1990). Electron microscopic localization of γ- and βII-subspecies of protein kinase C in rat hippocampus.Brain Res. 518:209–217.CrossRefPubMedGoogle Scholar
  37. Lakso, M., Sauer, B., Mosinger, B., Jr., Lee, E. J., Manning, R. W., Yu, S.-H., Mulder, K. L., and Westphal, H. (1992). Targeted oncogene activation by site-specific recombination in transgenic mice.Proc. Natl. Acad. Sci. USA 89: 6232–6236.PubMedGoogle Scholar
  38. Le Meur, M., Gerlinger, P., Benoist, C., and Mathis, D. (1985). Correcting an immune-response deficiency by creatingE α gene transgenic mice.Nature 316:38–42.PubMedGoogle Scholar
  39. Malenka, R. C., Kauer, J. A., Perkel, D. J., Mauk, M. D., Kelly, P. T., Nicoll, R. A., and Waxham, M. N. (1989). An essential role for postsynaptic calmodulin and protein kinase activity in long-term potentiation.Nature 340:554–557.CrossRefPubMedGoogle Scholar
  40. Malinow, R., Schulman, H., and Tsien, R. W. (1989). Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP.Science 245:862.PubMedGoogle Scholar
  41. Mansour, S. L., Thomas, K. R., and Capecchi, M. R. (1988). Disruption of the proto-oncogeneint-2 in mouse embryo-derived stem cells: A general strategy for targeting mutations to nonselectable genes.Nature 336:348–352.CrossRefPubMedGoogle Scholar
  42. Messer, W. S., Thomas, G. J., and Hoss, W. (1987). Selectivity of pirenzepine in the central nervous system. II. Differential effects of pirenzepine and scopolamine on performance of a representational memory task.Brain Res. 407: 37–45.PubMedGoogle Scholar
  43. Mombaerts, P., Iacomini, J., Johnson, R. S., Herrup, K., Tonegawa, S., and Papaioannou, V. E. (1992). RAG-1-deficient mice have no mature B and T lymphocytes.Cell 68:869–877.CrossRefPubMedGoogle Scholar
  44. Morris, R. G. M. (1981). Spatial localisation does not depend on the presence of local cues.Learn. Motiv. 12:239–260.CrossRefGoogle Scholar
  45. Morris, R. G. M., Garrud, P., Rawlins, J. N. P., and O'Keefe, J. (1982). Place navigation impaired in rats with hippocampal lesions.Nature 297:681–683.CrossRefPubMedGoogle Scholar
  46. Morris, R. G. M., Anderson, E., Lynch, G. S., and Baudry, M. (1986). Selective impairment of learning and blockage of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5.Nature 319:774–776.PubMedGoogle Scholar
  47. Nikolaev, E., Kaminska, B., Tischmeyer, W., Matthies, H., and Kaczmarek, L. (1992a). Induction of expression of genes encoding transcription factors in the rat brain elicited by behavioral training.Brain Res. Bull. 28:479–484.CrossRefPubMedGoogle Scholar
  48. Nikolaev, E., Werka, T., and Kaczmarek, L. (1992b). C-fos protooncogene expression in rat brain after long-term training of two-way active avoidance reaction.Behav. Brain Res. 48:91–94.PubMedGoogle Scholar
  49. Nishizuka, Y. (1988). The molecular heterogeneity of protein kinase C and its implications for cellular regulation.Nature 334:661–665.CrossRefPubMedGoogle Scholar
  50. O'Keefe, J., and Nadel, L. (1978).The Hippocampus as a Cognitive Map, Clarendon, Oxford.Google Scholar
  51. Olds, J. L., Anderson, M. L., McPhie, D. L., Staten, L. D., and Alkon, D. L. (1989). Imaging of memory-specific changes in the distribution of protein kinase C in the hippocampus.Science 245:866–869.PubMedGoogle Scholar
  52. Olds, J. L., Golski, S., McPhie, D. L., Olton, D., Mishkin, M., and Alkon, D. L. (1990). Discrimination learning alters the distribution of protein kinase C in the hippocampus of rats.J. Neurosci. 10:3707–3713.PubMedGoogle Scholar
  53. Olton, D. S., Becker, J. T., and Handelmann, G. E. (1979). Hippocampus, space, and memory.Behav. Brain Sci. 2: 313–365.Google Scholar
  54. Orban, P. C., Chui, D., and Marth, J. D. (1992). Tissue- and site-specific DNA recombination in transgenic mice.Proc. Natl. Acad. Sci. USA 89:6861–6865.PubMedGoogle Scholar
  55. Palmiter, R. D., Brinster, R. L., Hammer, R. E., Trumbauer, M. E., Rosenfeld, M. G., Birnberg, N. C., and Evans, R. M. (1982a). Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes.Nature 300:611–615.CrossRefPubMedGoogle Scholar
  56. Palmiter, R. D., Chen, H. Y., and Brinster, R. L. (1982b). Differential regulation of metallothionein-thymidine kinase fusion genes in transgenic mice and their offspring.Cell 29:701–710.CrossRefPubMedGoogle Scholar
  57. Palmiter, R. D., Norstedt, G., Gelinas, R. E., Hammer, R. E., and Brinster, R. L. (1983). Metallothionein-human GH fusion genes stimulate growth of mice.Science 222:809–814.PubMedGoogle Scholar
  58. Paylor, R., Rudy, J. W., and Wehner, J. M. (1991). Acute phorbol ester treatment improves spatial learning performance in rats.Behav. Brain Res. 45:189–193.PubMedGoogle Scholar
  59. Paylor, R., Morrison, S. K., Rudy, J. W., Waltrip, L. T., and Wehner, J. M. (1992). Brief exposure to an enriched environment improves performance on the Morris water task and increases hippocampal cytosolic protein kinase C activity in young rats.Behav. Brain Res. 52:49–59.PubMedGoogle Scholar
  60. Paylor, R., Baskall, L., and Wehner, J. M. (1993). Behavioral dissociations between C57BL/6 and DBA/2 mice on learning and memory tasks: A hippocampal-dysfunction hypothesis.Psychobiology 21:11–26.Google Scholar
  61. Paylor, R., Johnson, R. S., Papaioannou, V., Spiegelman, B. M., and Wehner, J. M. (1994a). Behavioral assessment of c-fos mice.Brain Res. 651:275–282.CrossRefPubMedGoogle Scholar
  62. Paylor, R., Tracy, R., Wehner, J. M., and Rudy, J. W. (1994b). DBA/2 and C57BL/6 mice differ in contextual-fear but not auditory-fear conditioning.Behav. Neurosci. 108: 810–817.CrossRefPubMedGoogle Scholar
  63. Pezzone, M. A., Lee, W.-S., Hoffman, G. E., and Rabin, B. S. (1992). Induction of c-fos immunoreactivity in the rat forebrain by conditioned and unconditioned aversive stimuli.Brain Res. 597:41–50.CrossRefPubMedGoogle Scholar
  64. Phillips, R. G., and LeDoux, J. E. (1992). Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning.Behav. Neurosci. 106:274–285.CrossRefPubMedGoogle Scholar
  65. Ramirez-Solis, R., Zheng, H., Whiting, J., Krumlauf, R., and Bradley, A. (1993).Hoxb-4 (Hox-2.6) mutant mice show homeotic transformation of a cervical vertebra and defects in the closure of the sternal rudiments.Cell 73: 279–294.PubMedGoogle Scholar
  66. Rawlins, J. N. P. (1985). Associations across time: The hippocampus as a temporary memory store.Behav. Brain Sci. 8:479–496.Google Scholar
  67. Rose, S. P. R. (1991). How chicks make memories: The cellular cascade from c-fos to dendritic remodelling.Trends Neurosci. 14:390–397.CrossRefPubMedGoogle Scholar
  68. Rudy, J. W., and Sutherland, R. J. (1989). The hippocampal formation is necessary for rats to learn and remember configural discriminations.Behav. Brain Res. 34:97–109.PubMedGoogle Scholar
  69. Schuman, E. M., and Madison, D. V. (1991). A requirement for the intercellular messenger nitric oxide in long-term potentiation.Science 254:1503–1506.PubMedGoogle Scholar
  70. Schwartz, J. H., Calignano, A., and Sacktor, T. C. (1990). The role of protein kinase C in learning and memory in Aplysia. In Ritchie, M. M., Magistretti, P. J., and Bolis, E. L. (eds.),Progress in Cell Research, Elsevier, New York, Vol. 1, pp. 279–286.Google Scholar
  71. Shearman, M. S., Shinomura, T., Oda, T., and Nishizuka, Y. (1991). Synaptosomal protein kinase C subspecies. A. Dynamic changes in the hippocampus and cerebellar cortex concomitant with synaptogenesis.J. Neurochem. 56:1255–1262.PubMedGoogle Scholar
  72. Silva, A. J., Paylor, R., Wehner, J. M., and Tonegawa, S. (1992a). Impaired spatial learning in α-calcium-calmodulin kinase II mutant mice.Science 257:206–211.PubMedGoogle Scholar
  73. Silva, A. J., Stevens, C. F., Tonegawa, S., and Wang, Y. (1992b). Deficient hippocampal long-term potentiation in α-calcium-calmodulin kinase II mutant mice.Science 257:201–211.PubMedGoogle Scholar
  74. Smith, A. G. (1992). Mouse embryo stem cells: Their identification, propagation and manipulation.Cell Biol. 3: 385–399.Google Scholar
  75. Soderling, T. R., Fukunaga, K., Brickey, D. A., Fong, Y. L., Rich, D. P., Smith, K., and Colbran, R. J. (1991). Molecular and cellular studies on brain calcium/calmodulin-dependent protein kinase II.Prog. Brain Res. 89:169–183.PubMedGoogle Scholar
  76. Sutherland, R. J., and Rudy, J. W. (1989). Configural association theory: The role of the hippocampal formation in learning, memory, and amnesia.Psychobiology 17:129–144.Google Scholar
  77. Sutherland, R. J., Kolb, B., and Whishaw, I. Q. (1982). Spatial mapping: Definitive disruption by hippocampal or medial frontal cortical damage in the rat.Neurosci. Lett. 31:271–276.CrossRefPubMedGoogle Scholar
  78. Thomas, K. R., and Capecchi, M. R. (1986). Introduction of homologous DNA sequences into mammalian cells induces mutations in the cognate gene.Nature 324:34–38.PubMedGoogle Scholar
  79. Thomas, K. R., and Capecchi, M. R. (1990). Targeted disruption of the murineint-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development.Nature 346:847–850.CrossRefPubMedGoogle Scholar
  80. Tischmeyer, W., Kaczmarek, L., Strauss, M., Jork, R., and Matthies, H. (1990). Accumulation of c-fos mRNA in rat hippocampus during acquisition of a brightness discrimination.Behav. Neural Biol. 54:165–171.PubMedGoogle Scholar
  81. Upchurch, M., and Wehner, J. M. (1988). Differences between inbred strains of mice in Morris water maze performance.Behav. Genet. 18:55–68.CrossRefPubMedGoogle Scholar
  82. Wagner, E. F., Stewart, T. A., and Mintz, B. (1981). The human β-globin gene and a functional viral thymidine kinase gene in developing mice.Proc. Natl. Acad. Sci. USA 78:5016–5020.PubMedGoogle Scholar
  83. Wahlsten, D. (1972). Genetic experiments with animal learning: A critical review.Behav. Biol. 7:143–182.CrossRefPubMedGoogle Scholar
  84. Wang, Z.-Q., Ovitt, C., Grigoriadis, A. E., Möhle-Steinlein, U., Rüther, U., and Wagner, E. F. (1992). Bone and haematopoietic defects in mice lacking c-fos.Nature 360: 741–745.PubMedGoogle Scholar
  85. Wehner, J. M., and Upchurch, M. (1989). The effects of chronic oxotremorine treatment on spatial learning and tolerance development in mice.Pharm. Biochem. Behav. 32:543–551.Google Scholar
  86. Wehner, J. M., Sleight, S., and Upchurch, M. (1990). Hippocampal protein kinase C activity is reduced in poor spatial learners.Brain Res. 523:181–187.CrossRefPubMedGoogle Scholar
  87. Wilmut, I., Hooper, M. L., and Simons, J. P. (1991). Genetic manipulation of mammals and its application in reproductive biology.J. Reprod. Fert. 92:245–279.Google Scholar
  88. Zimmer, A., and Gruss, P. (1989). Production of chimaeric mice containing embryonic stem (ES) cells carrying a homoeoboxHox 1.1 allele mutated by homologous recombination.Nature 338:150–156.CrossRefPubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Jeanne M. Wehner
    • 2
  • Barbara J. Bowers
    • 1
  • Richard Paylor
    • 1
  1. 1.Institute for Behavioral GeneticsUniversity of ColoradoBoulder
  2. 2.School of PharmacyUniversity of ColoradoBoulder

Personalised recommendations