Advertisement

Computational Mathematics and Modeling

, Volume 11, Issue 4, pp 391–400 | Cite as

Generalized Hopf formulas for the nonautonomous Hamilton-Jacobi equation

  • I. V. Rublev
Mathematical Modeling
  • 59 Downloads

Abstract

Generalized Hopf formulas are provided for minimax (viscosity) solutions of Hamilton-Jacobi equations of the formVt+H(t, DxV)=0 andVt+H(t, V, DxV)=0 with the boundary conditionV (T, x)=ϕ(x), where ϕ is a convex function. The bounds within which these formulas apply are elucidated.

Keywords

Mathematical Modeling Computational Mathematic Industrial Mathematic Convex Function Hopf Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. I. Subbotin,Minimax Solutions and the Hamilton-Jacobi Equation [in Russian], Nauka, Moscow (1991).Google Scholar
  2. 2.
    A. I. Subbotin, “Minimax solutions of first-order partial differential equations,”Usp. Mat. Nauk,51, No. 2, 105–138 (1996).zbMATHMathSciNetGoogle Scholar
  3. 3.
    D. B. Silin, “Set-valued integration and viscosity solutions of the Hamilton-Jacobi equation,”Differents. Uravn.,31, 129–137 (1995).zbMATHMathSciNetGoogle Scholar
  4. 4.
    D. B. Silin, “Viscosity solutions via unbounded set-valued integration,”Nonlinear Anal. T. M. A.,31, 55–90 (1998).zbMATHMathSciNetGoogle Scholar
  5. 5.
    E. Hopf, “Generalized solutions of nonlinear equations of first order,J. Math. Mech.,14, 951–973 (1965).zbMATHMathSciNetGoogle Scholar
  6. 6.
    R. T. Rockafellar,Convex Analysis [Russian translation], Mir, Moscow (1973).Google Scholar
  7. 7.
    E. N. Barron and H. Ishii, “The Bellman equation for minimizing the maximum cost,”Nonlinear Anal. T. M. A.,13, 1067–1090 (1989).MathSciNetGoogle Scholar
  8. 8.
    E. N. Barron, R. Jensen, and W. Liu, “Hopf-Lax formula foru t+H(u, Du)=0, II,”Comm. PDE,22, 1141–1160 (1997).MathSciNetGoogle Scholar
  9. 9.
    M. G. Crandall and L. C. Evans, “Viscosity solutions of Hamilton-Jacobi equations,Trans. AMS,277, 1–42 (1983).Google Scholar
  10. 10.
    M. G. Crandall, L. C. Evans, and P.-L. Lions, “Some properties of viscosity solutions of Hamilton-Jacobi equations,”Trans. AMS,282, 487–502 (1984).MathSciNetGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 2000

Authors and Affiliations

  • I. V. Rublev

There are no affiliations available

Personalised recommendations