Fibre Chemistry

, Volume 32, Issue 1, pp 63–68 | Cite as

New carbon fibre adsorbents based on natural cellulose

  • A. A. Morozova
  • Y. V. Brezhneva
  • N. V. Anan'eva
Properties and Use of Chemical Fibres


Thermal decomposition of natural cellulose fibres and the possibility of optimizing fabrication of CFM in the presence of sodium and potassium phosphates were investigated. It was found that the use of phosphoruscontaining additives for modification of the initial fibre stock allows reducing the temperature at which intensive degradation begins, increasing the yield of carbonized residue, and giving the CFM new properties during subsequent activation, in particular, porosity defined and adjustable within wide limits. The sorption-active CFM developed have valuable properties characteristic of both carbon and fibre materials.


Polymer Phosphate Potassium Cellulose Porosity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. Konkin,Carbon and Other Heat-Resistant Fibre Materials [in Russian], Khimiya, Moscow (1974).Google Scholar
  2. 2.
    A. S. Fialkov,Graphite Materials [in Russian], Khimiya, Moscow (1979).Google Scholar
  3. 3.
    R. M. Levit,Conducting Chemical Fibres [in Russian], Khimiya, Moscow (1986).Google Scholar
  4. 4.
    I. N. Ermolenko, I. P. Lyubliner, and N. V. Gul'ko,Element-Containing Carbon Fibre Materials [in Russian], Nauka i Tekhnika, Minsk (1982).Google Scholar
  5. 5.
    I. N. Emolenko, A. A. Morozova, and I. P. Lyubliner,Sorption-Active Carbon Materials and Prospects for Their Use in the National Economy [in Russian], BelNIINTI, Minsk (1976).Google Scholar
  6. 6.
    A. A. Morozova and I. N. Ermolenko,Dokl. Akad. Nauk BSSR,25, No. 9, 828–834 (1981).Google Scholar
  7. 7.
    A. A. Morozova and I. N. Ermolenko,Zh. Prikl. Khim., No. 12, 2777–2782 (1989).Google Scholar
  8. 8.
    A. A. Morozova and I. N. Ermolenko,Zh. Prikl. Khim., No. 11, 2608–2612 (1983).Google Scholar
  9. 9.
    A. A. Morozova and I. N. Ermolenko,Kolloidn. Zh., No. 4, 77–773 (1980).Google Scholar
  10. 10.
    A. A. Morozova, V. A. Obrubov, et al.,Zh. Prikl. Khim., No. 8, 1740–1746 (1985).Google Scholar
  11. 11.
    “Processing of products of wood pyrolysis,” in:Sb. Trudov TsNILKhI, No. 25 (1976), pp. 4–47.Google Scholar
  12. 12.
    M. I. Yatsevskaya and V. S. Komarov,Khim. Drevesiny, No. 2, 91–96 (1979).Google Scholar
  13. 13.
    V. S. Komarov, I. N. Ermolenko, et al.,Zh. Prikl. Khim.,50, No. 4, 904–908 (1977).Google Scholar
  14. 14.
    A. A. Morozova and Yu. V. Brezhneva,Khim. Volokna, No. 1, 27–30 (1977).Google Scholar
  15. 15.
    A. A. Morozova,Khim. Volokna, No. 3, 22–25 (1998).Google Scholar
  16. 16.
    T. G. Lamond and C. R. Price,J. Int. Sci.,31, 104–108 (1969).Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 2000

Authors and Affiliations

  • A. A. Morozova
  • Y. V. Brezhneva
  • N. V. Anan'eva

There are no affiliations available

Personalised recommendations