Computational Mathematics and Modeling

, Volume 10, Issue 1, pp 92–108 | Cite as

A mathematical model of oxidation of Co in a thin layer of a Pd zeolite catalyst

  • E. S. Kurkina
  • E. D. Tolstunova


We construct and study a distributed mathematical model of oxidation ofCO in a planar layer of aPd zeolite catalyst. The model is a system of ordinary differential equations describing a chain of locally connected chemical oscillators. Each oscillator is an oscillatory process of the reaction occurring in the corresponding layer of zeolite. The peculiarity of this chain system is that the connection between the oscillators is parametric, since it is implemented through diffusion ofCO in the gaseous phase. We find conditions for existence and uniqueness of various types of oscillations in the system, including synchronous, quasi-periodic, and chaotic. We construct the phase diagram on the plane of two external parameters and give a bifurcation analysis, studying the scenario of transition to chaos. Two tables, 12 figures. Bibliography: 15 titles.


Differential Equation Mathematical Model Phase Diagram Gaseous Phase Thin Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    M. M. Slinko and N. Jaeger, “Oscillating heterogeneous catalytic systems,” in:Elsevier Studies in Surface Science and Catalysis, Vol. 86 (1994), p. 408.Google Scholar
  2. 2.
    N. I. Jaeger, K. Moller and P. J. Plath,J. Chem. Soc., Faraday Trans. I,82, 3315–3330 (1986).CrossRefGoogle Scholar
  3. 3.
    M. M. Slinko, N. I. Jaeger, and P. Svensson,J. Catal.,118, 349–359 (1989).CrossRefGoogle Scholar
  4. 4.
    B. C. Sales, J. E. Turner, and M. B. Maple,Surf. Sci.,114, 381–394 (1982).CrossRefGoogle Scholar
  5. 5.
    M. R. Basset and R. Imbihl,J. Chem. Phys.,93, p. 811 (1990).Google Scholar
  6. 6.
    M. M. Slinko, N. I. Jaeger, and P. Svensson,Proceedings of the International Conference on “Unsteady State Processes in Catalysis,” Novosibirsk (1990), pp. 415–421.Google Scholar
  7. 7.
    E. S. Kurkina, N. V. Peskov, M. M. Slin'ko, and M. G. Slin'ko, “On the nature of the chaotic oscillations of the reaction rate of CO oxidation on a Pd zeolite catalyst,”Dokl. Ross. Akad. Nauk,351, No. 4.Google Scholar
  8. 8.
    C. G. Steinmetz and R. Larter, “The quasiperiodic route to chaos in a model of the peroxidase-oxidase reaction,”J. Chem. Phys.,94, No. 2, 15 January (1991).Google Scholar
  9. 9.
    V. Petrov, S. K. Scott, and K. Showalter, “Mixed-mode oscillations in chemical systems,”J. Chem. Phys.,97, No. 9, 1 November (1992).Google Scholar
  10. 10.
    T. V. Bronnikova, W. M. Schaffer and L. F. Olsen, “Quasiperiodicity in a detailed model of the peroxidase-oxidase reaction,”J. Chem. Phys.,105, No. 24, 22 December (1996).Google Scholar
  11. 11.
    T. S. Akhromeeva, S. P. Kurdyumov, G. G. Malinetskii, and A. A. Samarskii,Nonstationary Structures and Diffusion Chaos [in Russian], Nauka, Moscow (1992).Google Scholar
  12. 12.
    P. Berget, Y. Pomeau, and C. Vidal,Order in Chaos: On the Deterministic Approach to Turbulence [Russian translation], Mir, Moscow (1991).Google Scholar
  13. 13.
    Yu. I. Neimark and P. S. Landa,Stochastic and Chaotic Oscillations [in Russian], Nauka, Moscow (1987).Google Scholar
  14. 14.
    V. S. Anishchenko,Complex Oscillations in Simple Systems [in Russian], Nauka, Moscow (1990).Google Scholar
  15. 15.
    G. Haken,Synergetics [Russian translation], Mir, Moscow (1980).Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • E. S. Kurkina
  • E. D. Tolstunova

There are no affiliations available

Personalised recommendations