Skip to main content

Advertisement

Log in

Morphological alterations of gap junctions in phalloidin-treated rat livers

  • Liver, Pancreas, and Biliary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Morphological alterations in the pattern of liver cell gap junctions were examined in phalloidin-treated rats to assess the role of gap junctions in experimental intrahepatic cholestasis. Double-labelled fluorescent staining of gap junctions and F-actin were performed using a monoclonal antibody against rat hepatocyte connexin 32 and rhodamine-phalloidin. Immunoelectron microscopy, using the anti-connexin 32 antibody, freeze-fracture replica electron microscopy, and conventional electron microscopy were also performed. In phalloidin-treated rat livers, the specific immunofluorescent staining of connexin 32 was markedly decreased in the pericentral area after 1 day of phalloidin treatment and, after 5 days of phalloidin treatment, there was a decrease in connexin 32 staining in the entire hepatic lobule. On the other hand, F-actin staining at the cell periphery and at the bile canaliculi was markedly increased in the pericentral area of the hepatic lobule after 1 day of phalloidin treatment and in the entire lobule after 5 days of treatment. Immunoelectron micropscopy showed that both sides of the cytoplasmic domains of gap junctions were stained with anti-connexin 32 antibody in controls, whereas, in cholestatic rats, only one side of the cytoplasmic domain of some gap junctions was stained with anti-connexin 32 antibody after 1 or 3 days of phalloidin treatment. No gap junctions were observed after 5 days of phalloidin treatment either by freeze-fracture replica electron microscopy or by conventional electron microscopy. These results indicate that with phalloidin treatment, hepatocyte gap junctions decrease, first in the pericentral area, and finally throughout the entire lobule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Makowsky L, Caspar DL, Phillips WC, et al. Gap junction structure: 2. Analysis of the X-ray diffraction data. J Cell Biol 1977;74:629–645.

    Google Scholar 

  2. Unwin PNT, Zamphigi G. Structure of the junction between communicating cells. Nature 1980;283:545–549.

    Article  PubMed  CAS  Google Scholar 

  3. Bennet MVL, Goodenough DA. Gap junctions, electronic coupling, and intercellular communication. Neurosci Res Program Bull 1978;16:373–386.

    Google Scholar 

  4. Dermietzel R, Yancey SB, Traub O, et al. Major loss of the 28kD protein of gap junction in proliferating hepatocytes. J Cell Biol 1987;105:1925–1934.

    Article  PubMed  CAS  Google Scholar 

  5. Sugiyama Y, Ohta H. Changes in density and distribution of gap junctions after partial hepatectomy: Immunohistochemical and morphometric studies. Arch Histol Cytol 1990;53:71–80.

    PubMed  CAS  Google Scholar 

  6. Janssen-Timmen U, Traub O, Dermietzel R, et al. Reduced number of gap junctions in rat hepatocarcinomas detected by monoclonal antibody. Carcinogenesis 1986;7:1475–1482.

    PubMed  CAS  Google Scholar 

  7. Beer DG, Neveu MJ, Paul DL, et al. Expression of the c-raf protooncogene, q-glutamyl transpeptidase, and gap junction protein in rat liver neoplasms. Cancer Res 1988;48:1610–1617.

    PubMed  CAS  Google Scholar 

  8. Fitzgerald DJ, Mensil M, Oyamada M, et al. Changes in gap junction protein (connexin 32) gene expression during rat liver carcinogenesis. J Cell Biochem 1989;41:97–102.

    Article  PubMed  CAS  Google Scholar 

  9. Watanabe S, Smith CR, Phillips MJ. Coordination of the contractile activity of bile canaliculi: Evidence from calcium microinjection of triplet hepatocytes. Lab Invest 1985;53:275–279.

    PubMed  CAS  Google Scholar 

  10. Smith CR, Oshio C, Miyairi M, et al. Coordination of the contractile activity of bile canaliculi: Evidence from spontaneous contractions in vitro. Lab Invest 1985;53:270–274.

    PubMed  CAS  Google Scholar 

  11. Gabbiani G, Montesano R, Tuchweber B, et al. Phalloidin-induced hyperplasia of actin filaments in rat hepatocytes. Lab Invest 1975;33:562–569.

    PubMed  CAS  Google Scholar 

  12. Takeda A, Kanoh M, Shimizu T, et al. Monoclonal antibodies recognizing different epitopes of the 27-kDa gap junction protein from rat liver. J Biochem 1988;104:901–907.

    PubMed  CAS  Google Scholar 

  13. McLean IW, Nakane PK. Periodate-lysine-paraformaldehyde fixative: A new fixative for immunoelectron microscopy. J Histochem Cytochem 1974;14:22:1077–1083.

    Google Scholar 

  14. Graham RC, Karnovsky NJ. The early stages of injected horseradish peroxidase in the proximal tubules of mouse kidney: Ultrastructural cytochemistry by a new technique. J Histochem Cytochem 1966;291–302.

  15. Morioka H, Suganuma A, Yokota Y, et al. Ultrastructure of staphylococci after freeze-etching. J Electron Microse (Tokyo) 1973;22:255–266.

    CAS  Google Scholar 

  16. Traub O, Look J, Dermietzel R, et al. Comparative characterization of the 21kD and 26kD gap junction proteins in murine liver and cultured hepatocytes. J Cell Biol 1989;108:1039–1051.

    Article  PubMed  CAS  Google Scholar 

  17. Johnson KR, Rampe PD, Hur KC, et al. A lens intercellular junction protein, MR26, is a phosphoprotein. J Cell Biol 1986;102:1334–1343.

    Article  PubMed  CAS  Google Scholar 

  18. Beyer EC, Paul DL, Goodenough DA. Connexin 43: A protein from rat heart homologous to a gap junction protein from liver. J Cell Biol 1987;105:2621–2629.

    Article  PubMed  CAS  Google Scholar 

  19. Zhang J-T, Nicholson BJ. Sequence and tissue distribution of a second protein of hepatic gap junctions, Cx26, as deduced from its cDNA. J Cell Biol 1989;109:3391–3401.

    Article  PubMed  CAS  Google Scholar 

  20. Traub O, Janssen-Timmen U, Drüge PM, et al. Immunological properties of gap junction protein from mouse liver. J Cell Biochem 1982;19:27–44.

    Article  PubMed  CAS  Google Scholar 

  21. Dubin M, Maurice M, Feldman G, et al. Phalloidin-induced cholestasis in the rat. Relation to changes in microfilaments. Gastroenterology 1978;75:450–455.

    PubMed  CAS  Google Scholar 

  22. Ohta M, Marceau N, French SW. Pathologic changes in the cytokeratin pericanalicular sheath in experimental cholestasis and alcoholic fatty liver. Lab Invest 1988;59:60–73.

    PubMed  CAS  Google Scholar 

  23. Meyer RA, Lampe PD, Malewicz B, et al. Enhanced gap junction formation with LDL and apolipoprotein B. Exp Cell Res 1991;196:72–81.

    Article  PubMed  CAS  Google Scholar 

  24. Vaughan DK, Lasater EM. Renewal of electronic synapses in teleost retinal horizontal cells. J Comp Neurol 1990;299: 364–374.

    Article  PubMed  CAS  Google Scholar 

  25. Aguas AP. Annular gap junctions in hepatocytes of normal adult rats. J Submicrosc Cytol 1981;13:85–88.

    Google Scholar 

  26. Watanabe H, Washika H, Tonosaki A. Gap junction and its cytoskeletal undercoats as involved in invagination-endocytosis. Tohoku J Exp Med 1988;156:175–190.

    PubMed  CAS  Google Scholar 

  27. Leach DH, Oliphant LW. Degradation of annular gap junction of the equine hoof wall. Acta Anat 1984;120:214–219.

    PubMed  CAS  Google Scholar 

  28. Tenkova T, Chaldakov GN. Internalized gap junction in ciliary epithelium of rabbit and rat. A transmission electron-microscopic study. Cell Tissue Res 1990;261:205–210.

    Article  PubMed  CAS  Google Scholar 

  29. Pfeifer U. Autophagic sequestration of internalized gap junctions in rat liver. Eur J Cell Biol 1980;21:244–246.

    PubMed  CAS  Google Scholar 

  30. Yancey SB, Easter D, Revel J-P. Cytological changes in gap junctions during liver degeneration. J Ultrastruct Res 1979; 67:229–242.

    Article  PubMed  CAS  Google Scholar 

  31. Lane NJ, Swales LS. Dispersal of junctional particles, not internalization, during the in vivo disappearance of gap junctions. Cell 1980;19:579–586.

    Article  PubMed  CAS  Google Scholar 

  32. Braun J, Abney JR, Owicki JC. How gap junction maintains its structure. Nature 1984;310:316–318.

    PubMed  CAS  Google Scholar 

  33. Traub O, Look J, Paul D, et al. Cyclic adenosine monophosphate stimulates biosynthesis and phosphorylation of the 26 kDa gap junction protein in cultured mouse hepatocytes. Eur J Cell Biol 1987;43:48–54.

    PubMed  CAS  Google Scholar 

  34. Noma A, Tsuboi N. Dependence of junctional conductance on proton, calcium, and magnesium ions in cardiac paired cells of guinea pig. J Physiol 1987;382:193–212.

    PubMed  CAS  Google Scholar 

  35. Spray DC, Stern JH, Harris AL, et al. Gap junctional conductance: Comparison of sensitivities to H and Ca ions. Proc Natl Acad Sci USA 1982;79:441–445.

    PubMed  CAS  Google Scholar 

  36. Jongen WMF, Fitzgerald DJ, Asamoto M, et al. Regulation of connexin 43-mediated gap junctional intercellular communication by Ca2+ in mouse epidermal cells is controlled by E-cadherin. J Cell Biol 1991;114:545–555.

    Article  PubMed  CAS  Google Scholar 

  37. Faulstich H, Münter K, Mayer D. Phalloidin depletes the mitochondrial Ca2+ compartment of hepatocytes. FEBS Lett 1984;167:241–244.

    Article  PubMed  CAS  Google Scholar 

  38. Tadvalkar G, Pinto da Silva P. In vitro, rapid assembly of gap junctions is induced by cytoskeleton disruptors. J Cell Biol 1983;96:1279–1287.

    Article  PubMed  CAS  Google Scholar 

  39. Watanabe S, Miyairi M, Oshio C, et al. Phalloidin alters bile canalicular contractility in primary monolayer cultures of rat liver. Gastroenterology 1983;85:245–253.

    PubMed  CAS  Google Scholar 

  40. Elias E, Hruban JR, Wade JB, et al. Phalloidin-induced cholestasis: A microfilament-mediated change in junctional complex permeability. Proc Natl Acad Sci USA 1980;77:2229–2233.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohta, M., Okanoue, T., Takami, S. et al. Morphological alterations of gap junctions in phalloidin-treated rat livers. J Gastroenterol 29, 172–179 (1994). https://doi.org/10.1007/BF02358679

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02358679

Key words

Navigation