Skip to main content
Log in

Distribution of values of Fourier coefficients for modular forms of weight 1

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

For modular forms of weight, 1, the distribution of values of their Fourier coefficients over polynomial sequences of natural numbers is considered. A new proof of Bernays' theorem is given. It is proved that the error term in the well-known Rankin-Selberg asymptotic formula can be improved for cusp forms associated with binary theta series. Bibliography: 52 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. D. T. A. Elliott, C. J. Moreno, and F. Shahidi, “On the absolute value of Ramanujan's τ-function,”Math. Ann.,266, 507–511 (1984).

    Article  MathSciNet  Google Scholar 

  2. R. A. Rankin, “Contributions to the theory of Ramanujan's function τ(n) and similar arithmetical functions. I. The zeros of the function\(\sum\nolimits_{n = 1}^\infty r (n)n^{ - s}\) on the line Ress=13/2. II. The order of the Fourier coefficients of the integral modular forms,”Proc. Cambridge Philos. Soc.,35, 351–356; 357–372 (1939).

    MATH  MathSciNet  Google Scholar 

  3. A. Selberg, “Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist,”Arch. Math. Naturvid.,43, No. 4, 47–50 (1940). (Collected Papers, Vol. I, Berlin (1989), pp. 38–41).

    MathSciNet  Google Scholar 

  4. A. I. Vinogradov, “On extension to the left half-plane of the scalar product of HeckeL-series with Grössencharacters,”Izv. Akad. Nauk SSSR, Ser. Mat.,29, 485–492 (1965).

    MATH  MathSciNet  Google Scholar 

  5. N. Kurokawa, “On the meromorphy of Euler products. Part I. Artin type,” Preprint, Tokyo Inst. Techn., (1977).

  6. N. Kurokawa, “On the meromorphy of Euler products,”Proc. Jpn. Acad. Sci.,54A, No. 6, 163–166 (1978).

    MathSciNet  Google Scholar 

  7. N. Kurokawa, “On Linnik's problem,”Proc. Jpn. Acad. Sci.,54A, No. 6, 167–169 (1978).

    MathSciNet  Google Scholar 

  8. B. Z. Moroz, “Scalar product ofL-functions with Grössencharacters: its meromorphic continuation and natural boundary,”J. Reine Angew. Math.,332, 99–117 (1982).

    MATH  MathSciNet  Google Scholar 

  9. O. M. Fomenko “Extendability to the whole plane and the functional equation for the scalar product of HeckeL-series of two quadratic fields,”Tr. Mat. Inst. Akad. Nauk SSSR,128, 232–241 (1972).

    MATH  MathSciNet  Google Scholar 

  10. P. Bernays,Über die Darstellung von Positiven, Ganzen Zahlen Durch die Primitiven, Binären Quadratischen Formen einer nicht-Quadratischen Diskriminante, Diss., Göttingen (1912).

  11. B. M. Bredikhin and Yu. V. Linnik “Asymptotic behavior and ergodic properties of solutions of the generalized Hardy-Littlewood equation,”Mat. Sb.,71 (113), No. 2, 145–161 (1966).

    MathSciNet  Google Scholar 

  12. E. P. Golubeva, “On the representation of large integers by binary quadratic forms,”Zap. Nauchn. Semin, POMI,226, 60–64 (1996).

    MATH  Google Scholar 

  13. M. B. Barban, “Multiplicative functions ofΣ R-uniformly distributed, sequences,”Izv. Akad. Nauk Uzb. SSR, Ser. Fiz.-Mat., No. 6, 13–19 (1964).

    MATH  MathSciNet  Google Scholar 

  14. M. B. Barban and P. P. Vekhov, “Summation of multiplicative functions of polynomials,”Mat. Zametki,5, 669–680 (1969).

    MathSciNet  Google Scholar 

  15. E. Hecke, “Über Modulfunktionen und die Dirichletschen Reihen mit Eulerscher Produktentwicklung. I,”Math. Ann.,114, 1–28 (1937). (Mathematische Werke, Göttingen (1983), pp. 644–671).

    MATH  MathSciNet  Google Scholar 

  16. F. Shahidi, “On certainL-functions,”Am. J. Math.,103, 297–255 (1981).

    MATH  MathSciNet  Google Scholar 

  17. R. A. Rankin, “A family of newforms,”Ann. Acad. Sci. Fenn. Ser. AI. Math.,10, 461–467 (1985).

    MATH  MathSciNet  Google Scholar 

  18. R. A. Rankin, “Sums of powers of cusp form coefficients. II,”Math. Ann.,272, 593–600 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  19. A. I. Vinogradov, “The general Hardy-Littlewood equation,”Mat. Zametki,1, 189–197 (1967).

    MATH  MathSciNet  Google Scholar 

  20. E. P. Golubeva, “Asymptotics of the number of lattice points on certain ellipsoids,”Mat. Zametki,11, 625–634 (1972).

    MATH  MathSciNet  Google Scholar 

  21. P. Erdös, “On the sum\(\sum\nolimits_{k = 1}^x d (f(k))\),”J. London Math. Soc.,27, 7–15 (1952).

    MATH  MathSciNet  Google Scholar 

  22. E. Landau, “Über die Einteilung der positiven ganzen Zahlen in vier Klassen nach der Mindestzahl der zu ihren additiven Zusammensetzung erforderlichen Quadrate,”Arch. Math. Phys., (3),13, 305–312 (1908).

    MATH  Google Scholar 

  23. G. H. Hardy,Ramanujan, Cambridge (1940).

  24. R. D. James, “The distribution of integers represented by quadratic forms,”Am. J. Math.,60, 737–744 (1938).

    MATH  Google Scholar 

  25. G. Pall, “The distribution of integers represented by binary quadratic forms,”Bull. Am. Math. Soc.,49, 447–449 (1943).

    MATH  MathSciNet  Google Scholar 

  26. W. Heupel, “Die Verteilung der ganzen Zahlen, die durch quadratische Formen dargestellt werden,”Arch. Math.,19, 162–166 (1968).

    Article  MATH  MathSciNet  Google Scholar 

  27. R. M. Kaufman, “Asymptotic formula for the number of integers represented by binary quadratic forms,”Uchen. Zap. Vlad. Gos. Ped. Inst., Ser. Mat.,38, No. 2, 46–56 (1971).

    MathSciNet  Google Scholar 

  28. I. S. Luthar, “A generalization of a theorem of Landau,”Acta Arithm.,12, 223–228 (1967).

    MATH  MathSciNet  Google Scholar 

  29. A. G. Postnikov,Introduction to Analytic Number Theory, [in Russian], Nauka, Moskow (1971).

    Google Scholar 

  30. L. E. Dickson,History of the Theory of Numbers, Vol. III, New York (1934).

  31. R. W. K. Odoni, “On norms of integers in a full module of an algebraic number field and the distribution of values of binary integral quadratic forms,”Mathematika,22, 108–111 (1975).

    MATH  MathSciNet  Google Scholar 

  32. D. Shanks and L. P. Schmid, “Variations of a theorem of Landau. I.,”Math. Comp.,20, No. 96, 551–569 (1966).

    MathSciNet  Google Scholar 

  33. T. V. Vepkhvadze, “On the arithmetical meaning of singular series of positive binary quadratic forms,”Tr. Tbilis. Inst. Mat.,40, 60–77 (1974).

    Google Scholar 

  34. G. Pall, “The structure of the number of representations function in a positive binary quadratic form,”Math. Z.,36, 321–343 (1933).

    Article  MATH  MathSciNet  Google Scholar 

  35. E. J. Scourfield, “The divisors of a quadratic polynomial,”Proc. Glasgow Math. Ass.,5, 8–29 (1961).

    MATH  MathSciNet  Google Scholar 

  36. C. Hooley, “On the number of divisors of quadratic polynomials,”Acta Math.,110, 97–114 (1963).

    MATH  MathSciNet  Google Scholar 

  37. V. A. Bykovskii, “Spectral expansion of certain automorphic functions and its number-theoretical applications,”Zap. Nauchn. Semin. LOMI,134, 15–33 (1984).

    MATH  MathSciNet  Google Scholar 

  38. O. M. Fomenko, “Sums of three squares in imaginary quadratic fields,”Algebra Analiz,3, No. 5, 190–212, (1991).

    MATH  MathSciNet  Google Scholar 

  39. E. P. Golubeva, “The asymptotic distribution of lattice points belonging to given residue classes on hyperboloids of special form,”Mat. Sb.,123 (165), 510–533 (1984).

    MATH  MathSciNet  Google Scholar 

  40. B. F. Wyman, “What is a reciprocity law?”Am. Math. Monthly,79, 571–586 (1972).

    MATH  MathSciNet  Google Scholar 

  41. T. Hiramatsu, “Higher reciprocity law and modular forms of weight one,”Comm. Math. Univ. Sancti Pauli,31, 75–85 (1982).

    MATH  MathSciNet  Google Scholar 

  42. M. Koike, “Higher reciprocity law, modular forms of weight 1, and elliptic curves,”Nagoya Math. J.,98, 109–115 (1985).

    MATH  MathSciNet  Google Scholar 

  43. N. Ishii, “Cusp forms of weight one, quadratic reciprocity and elliptic curves,”Nagoya Math. J.,98, 117–137 (1985).

    MATH  MathSciNet  Google Scholar 

  44. T. Hiramatsu and N. Ishii, “Quartic residuacity and cusp forms of weight one,”Commun. Math. Univ. Sancti Pauli,34, 91–103 (1985).

    MathSciNet  Google Scholar 

  45. C. J. Moreno, “The Hoheisel phenomenon for generalized Dirichlet series,”Proc. Am. Math. Soc.,40, 47–51 (1973).

    MathSciNet  Google Scholar 

  46. E. P. Golubeva and O. M. Fomenko, “Values of Dirichlet series associated with modular forms, at the pointss=1/2, 1,”Zap. Nauchn. Semin. LOMI,134, 117–137 (1985).

    MathSciNet  Google Scholar 

  47. P. Turan, “Über einige Verallgemeinerungen eines Satzes von Hardy und Ramanujan,”J. London Math. Soc.,11, 125–133 (1936).

    MATH  Google Scholar 

  48. W. Schwarz, “Über die Summe\(\sum\nolimits_{n \leqslant x} {\varphi (f(n))} \) und verwandte Probleme,”Monatsh. Math.,66, 43–54 (1962).

    Article  MATH  MathSciNet  Google Scholar 

  49. G. H. Hardy, “Note on Ramanujan's arithmetical function τ(n),”Proc. Cambridge Philos. Soc. 23, 675–680 (1927).

    MATH  Google Scholar 

  50. A. B. Voronetskii, “An analogue of the Hardy theorem for Fourier coefficients of cusp form,” in:Automorphic Forms and Theory of Numbers [in Russian], Udmurt. State Univ. Izhevsk (1987), pp. 56–64.

    Google Scholar 

  51. A. Ivić,The Riemann Zeta-Function, New York (1985).

  52. K. Bulota, “On HeckeZ-functions and distribution of prime numbers,”Lit. Mat. Sb.,4, 309–328 (1964).

    MATH  MathSciNet  Google Scholar 

Download references

Authors

Additional information

Translated fromZapiski Nauchnykh Seminarov POMI, Vol. 226, 1996, pp. 196–227.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fomenko, O.M. Distribution of values of Fourier coefficients for modular forms of weight 1. J Math Sci 89, 1050–1071 (1998). https://doi.org/10.1007/BF02358541

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02358541

Keywords

Navigation