Fibre Chemistry

, Volume 31, Issue 6, pp 425–432 | Cite as

Structural and chemical transformations in thermooxidative stabilization of copolymeric polyacrylonitrile fibres

  • A. T. Kalashnik
  • L. A. Zlatoustova
  • G. Ya. Rudinskaya
  • A. T. Serkov
Chemistry and Technology of Chemical Fibres


The processes that take place during thermooxidative stabilization in copolymeric polyacrylonitrile (PAN) fibres of varying composition were examined. It was shown that the primary, or relaxation, shrinkage of PAN fibres is a function of the conditions of their fabrication and can be reduced by annealing the fibres above the glass transition temperature. The chemical transformations of PAN fibres are accompanied by structural transformations, manifested as shrinkage or elongation (flow) of the fibre. Mechanisms of deformation processes are proposed. The schemes of the chemical transformations of the structure of the fibres during their thermooxidative stabilization were examined. The direction and rate of chemical transformations of the structure of the fibres are a function of the composition of the copolymers; these parameters can be assigned and regulated by altering the conditions of spinning the fibres in the spinning bath.


Polymer Organic Chemistry Shrinkage Transition Temperature Glass Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Kakida and K. Tashiro,Polym. J.,28, 30 (1996).CrossRefGoogle Scholar
  2. 2.
    R. C. Houtz,Text. Res. J.,20, 786 (1950).Google Scholar
  3. 3.
    W. J. Burlant and J. L. Parsons,J. Polym. Sci.,22, 249 (1956).CrossRefGoogle Scholar
  4. 4.
    N. Grassie, J. N. Hay, and J. C. McNeil,J. Polym. Sci.,31, 205 (1958).CrossRefGoogle Scholar
  5. 5.
    N. I. Popik, N. P. Mil'kova, et al.,Vysokomolek. Soedin., B20, No. 10, 789 (1978).Google Scholar
  6. 6.
    Z. Bashir,Carbon,29, 1081 (1991).CrossRefGoogle Scholar
  7. 7.
    H. Kakida and K. Tashiro,Polym. J.,30, 474 (1998).Google Scholar
  8. 8.
    E. Fitzer, W. Fons, and M. Heine,Carbon,24, 387 (1986).CrossRefGoogle Scholar
  9. 9.
    H. Kakida and K. Tashiro,Polym. J.,30, 463 (1998).Google Scholar
  10. 10.
    G. H. Layden,J. Appl. Polym. Sci.,15, 196 (1971).Google Scholar
  11. 11.
    O. P. Bhal and L. M. Manocha,Angew. Markrmol. Chem.,48, 145 (1975).Google Scholar
  12. 12.
    O. P. Bhal and R. B. Mathur,Fiber Sci. Technol.,12, 31 (1979).Google Scholar
  13. 13.
    P. H. Wang,J. Appl. Polym. Sci.,67, 1185 (1998).Google Scholar
  14. 14.
    D. Braun, Recent progress in the thermal and photochemical degradation of poly(vinyl chloride),” in:Degradation and Stabilization of Polymers, G. Genskens (ed.), London (1975), pp. 23–41.Google Scholar
  15. 15.
    R. Bacaloglu and M. Fisch,Polym. Degr. Stab.,47, 33, (1995).Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • A. T. Kalashnik
  • L. A. Zlatoustova
  • G. Ya. Rudinskaya
  • A. T. Serkov

There are no affiliations available

Personalised recommendations