Molecular and Cellular Biochemistry

, Volume 35, Issue 1, pp 59–64 | Cite as

Stabilization of SV40 transformed human fibroblast cytoplasmic thymidine kinase by ATP

  • Pamela N. Porter
  • David Bull
  • Oliver W. Jones
Article

Summary

Human fibroblast cytoplasmic thymidine kinase is stabilized by ATP. Sedimentation in sucrose gradients shows that in the presence of ATP, cytoplasmic thymidine kinase has a higher molecular weight (54 000) than in the absence of ATP (28 000). Removal of ATP by dialysis results in the loss of enzyme activity. The subsequent addition of ATP restores activity following a second order time course. These results are interpreted to indicate that in a human fibroblast cell line, transformed by SV40 virus, cytoplasmic thymidine kinase is a dimer in the presence of ATP, but a less active monomer in its absence. Mitochondrial thymidine kinase from the same cell line is not affected by ATP.

Keywords

Molecular Weight Sucrose Enzyme Activity High Molecular Weight Thymidine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Taylor, A. T. et al., 1972. J. Biol. Chem. 247: 1930–1935.PubMedGoogle Scholar
  2. 2.
    Adelstein, S. J. et al., 1971. Develop. Biol. 26: 537–546.CrossRefPubMedGoogle Scholar
  3. 3.
    Bull, D. L. et al., 1974. Virology 47: 279–284.Google Scholar
  4. 4.
    Stafford, M. A. & Jones, O. W., 1972. Biochim. Biophys. Acta 277: 439–442.PubMedGoogle Scholar
  5. 5.
    Gordon, H. L. et al., 1968. Cancer Res. 28: 2068–2077.PubMedGoogle Scholar
  6. 6.
    Okuda, H. et al., 1972. Cancer Res. 23: 791–794.Google Scholar
  7. 7.
    Sneider, T. W. et al., 1979. Cancer Res. 29: 40–54.Google Scholar
  8. 8.
    Elford, H. L., 1970. J. Biol. Chem. 245: 5228–5233.PubMedGoogle Scholar
  9. 9.
    Taylor, A. T. et al., 1976. Cancer Res. 35: 2070–2072.Google Scholar
  10. 10.
    Schapira, F. et al., 1970. Biochem. Biophys. Res. Comm. 40: 321–327.CrossRefPubMedGoogle Scholar
  11. 11.
    Nawata, H. & Kamiya, T., 1975. J. Biochem. 78: 1215–1224.PubMedGoogle Scholar
  12. 12.
    Kit, S. et al., 1974. J. Gen. Virol. 24: 281–292.PubMedGoogle Scholar
  13. 13.
    Berk, A. J. et al., 1973. Arch. Biochem. Biophys. 154: 564–565.CrossRefGoogle Scholar
  14. 14.
    Iwatsuki, N. & Okazaki, R., 1967. J. Mol. Biol. 29: 139–154.PubMedGoogle Scholar
  15. 15.
    Bresnick, E. et al., 1970. Cancer Res. 30: 2502–2506.PubMedGoogle Scholar
  16. 16.
    Klemperer, H. G. & Haynes, G. R., 1968. Biochem. J. 108: 541–546.PubMedGoogle Scholar
  17. 17.
    Chi-Cheng, Y. & Prushoff, W. H., 1974. Biochem. 13: 1179–1185.Google Scholar

Copyright information

© Martinus Nijhoff/Dr. W. Junk Publishers 1981

Authors and Affiliations

  • Pamela N. Porter
    • 1
  • David Bull
    • 1
  • Oliver W. Jones
    • 1
  1. 1.Div. of Medical Genetics M-013, Dept. of MedicineUniv. of California, San DiegoLa JollaUSA

Personalised recommendations