Advertisement

Potato Research

, Volume 42, Issue 2, pp 333–351 | Cite as

Tolerance to abiotic stresses in potato plants: a molecular approach

  • Antonella Leone
  • Antonello Costa
  • Federica Consiglio
  • Immacolata Massarelli
  • Emilia Dragonetti
  • Monica De Palma
  • Stefania Grillo
Full Papers

Summary

Continuing study of the potato plant's response to stressful conditions has led to the identification of a large number of plant genes whose expression, is regulated by external stimuli. Stress-induced genes can be broadly divided into functional or regulatory genes. To the first category belong genes encoding proteins or enzymes of plant metabolic pathway, of molecules involved in repairing cellular damages and/or indispensable for restoring a new cellular homeostasis compatible with the external conditions. The other class includes genes primarily involved in the perception and/or intracellular transduction of the stress signal, such as kinases, phosphatases or transcription, factors. The research objectives in the field of plant stress tolerance has recently evolved from a mere cloning and description of stress-induced genes to the design of the best strategy of producing transgenic plants tolerant to environmental constraints. It is well known that stress tolerance is a complex trait, requiring the coordinated regulation of a network of genes that act synergistically and additively. At best, manipulation of one single down-stream gene may contribute only partially to the tolerance of the transgenic plants. Recent studies have shown that it is feasible to regulate the level of expression of many down-stream stress-induced genes in a coordinated fashion by regulating the expression of genes encoding transcription factors able to bind DNA motifs in the promoter of stress-induced genes. However, the constitutive high level of expression of transcription factors often causes detrimental phenotypic effects. This drawback could be bypassed by putting genes for transcription factors under the control of inducible promoters. In this way, endogenous tolerance genes are activated only when the stress event occurs, minimizing the negative pleiotropic effect. Novel technology (reverse genetics, DNA microarrays, mRNA differential display, T-DNA tagging, complementation and over-expression of plant cDNA in yeast as model for cellular stress tolerance), improvement of genetic transformation techniques (multiple gene transfer, gene targeting by homologous recombination) as well as a better efficiency of foreign gene expression (discovery of plant promoters with cell-specific, tissue-specific, developmental stage-specific, and/or inducible patterns of expression) will give a tremendous impulse to produce stress tolerant commercial cultivars of the main crops through genetic engineering.

Additonal keywords

genes transgenic plants Solanum tuberosum L. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aeschbacher, R.A., J. Muller, T. Boller & A. Wiemke, 1999. Purification of trehalase GMTRE1 from soybean nodules and cloning of its cDNA. GMTRE1 is expressed at low level in multiple tissues.Plant Physiology 119:489–496.CrossRefPubMedGoogle Scholar
  2. Aguan, K., K. Sugawara, N. Suzuki & T. Kusano, 1993. Low temperature-dependent expression of a rice gene encoding a protein with a leucine-zipper motif.Molecular General Genetics 240: 1–8.PubMedGoogle Scholar
  3. Azpiroz-Leehan, R. & K.A. Feldmann, 1997. T-DNA insertion mutagenesis in Arabidopsis: going back and forth.Trends in Genetics 13: 152–155.CrossRefPubMedGoogle Scholar
  4. Bachem, C.W.B., R.S. van der Hoeven, S.M. de Bruijn, D. Vreugdenhil, M. Zabeau & R.G.F. Visser, 1998. Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development.Plant Journal 9: 745–753.Google Scholar
  5. Beachy, R.N., 1997. Mechanisms and applications of pathogen-derived resistance in transgenic plants.Current Opinions in Biotechnology 8: 215–220.Google Scholar
  6. Birch, R.G., 1997. Plant transformation: problems and strategies for practical applications.Annual Review Plant Physiology and Plant Molecular Biology 48: 297–326.Google Scholar
  7. Blum, A., R. Munns, J.B. Passioura & N.C. Turner, 1996. Genetically engineered plants resistant to soil drying and salt stress: how to interpret osmotic relations?Plant Physiology 110: 1051–1053.PubMedGoogle Scholar
  8. Bohnert, H.J. & B. Shen, 1999. Transformation and compatible solutes.Scientia Horticulturae 78: 237–260.Google Scholar
  9. Bohnert, H.J. & R.G. Jensen, 1996. Strategies for engineering water-stress tolerance in plants.Trends in Biotechnology 14: 89–97.CrossRefGoogle Scholar
  10. Bohnert, H.J., E.D. Nelson & R.G. Jensen, 1995. Adaptations to environmental stresses.Plant Cell 7: 1099–1111.CrossRefPubMedGoogle Scholar
  11. Botella, J.R. & R.N. Arteca, 1994. Differential expression of two calmodulin genes in response to physical and chemical stimuli.Plant Molecular Biology 24: 757–766.CrossRefPubMedGoogle Scholar
  12. Bouchez, D. & H. Hofte, 1998. Functional genomics in plants.Plant Physiology 118: 725–732.CrossRefPubMedGoogle Scholar
  13. Braam, J., 1992. Regulated expression of the calmodulin-related TCH genes in culturedArabidopsis cells: induction by calcium and heat shock.Proceedings of the National Academy of Sciences USA 89: 3213–3216.Google Scholar
  14. Bray, E., 1997. Plant response to water deficit.Trends in Plant Science 2: 48–54.CrossRefGoogle Scholar
  15. Colonna-Romano, S., A. Leone & B. Maresca, 1998. Differential-Display Reverse Transcription-PCR (DDRT-PCR). Springer-Verlag, Heidelberg (ISBN 3-540-63297-2).Google Scholar
  16. Costa, A., I. Massarelli, E. Dragonetti, A. Leone & S. Grillo, 1999. Isolation of genes involved in response to osmotic stress. Abstract of Conference Papers and Posters of the 14th Triennial Conference of the European Association for Potato Research, Sorrento, Italy, 2–7 May 1999, pp. 44–45.Google Scholar
  17. Dujon, B., 1996. The yeast genome project: what did we learn?Trends in Genetics 12: 263–270.CrossRefPubMedGoogle Scholar
  18. Dure III, L., 1993. A repeating 11-mer amino acid motif and plant desiccation.Plant Journal 3: 363–369.CrossRefPubMedGoogle Scholar
  19. Gil-Mascarell, R., J.M. Lopez-Coronado, J.M. Belles, R. Serrano & P.L. Rodriguez, 1999. TheArabidopsis HAL2-like gene family includes a novel sodium-sensitive phosphatase.Plant Journal 17: 373–378.CrossRefPubMedGoogle Scholar
  20. Goddijn, O.J., T.C. Verwoerd, E. Voogd, R.W. Krutwagen, P.T. de Graaf, K. van Dun, J. Poels, A.S. Ponstein, B. Damm & J. Pen, 1997. Inhibition of trehalase activity enhances trehalose accumulation in transgenic plants.Plant Physiology 113: 181–90.CrossRefPubMedGoogle Scholar
  21. Grillo, S. & A. Leone, 1996. Physical stresses in plants: genes and their products for tolerance. Springer-Verlag, Heidelberg (ISBN 3-540-61347-1).Google Scholar
  22. Grillo, S., F. Consiglio, A. Costa & A. Leone, 1998. Experession of genes for acyl-desaturases in response to temperature changes in potato cells. Proceedings of XV EUCARPIA Genetics and breeding for crop quality and resistance, Viterbo, September 20–25, 1998, p. 100.Google Scholar
  23. Harwood, J.L., 1994. Environmental factors which can alter lipid metabolism.Progress in Lipid Research 33: 193–202.CrossRefPubMedGoogle Scholar
  24. Hayashi, H., L. Alia Mustardy, P. Deshnium, M. Ida & N. Murata, 1997. Transformation ofArabidopsis thaliana with thecodA gene for choline oxidase; accumulation of glycinebetaine and enhanced tolerance to salt and cold stress.Plant Journal 12: 133–142.CrossRefPubMedGoogle Scholar
  25. Hightower, R., C. Baden, E. Penzes, P. Lund & P. Dunsmuir, 1991. Expression of antifreeze proteins in transgenic plants.Plant Molecular Biology 17: 1013–1021.CrossRefPubMedGoogle Scholar
  26. Hiyayama, T., C. Ohto, T. Mizoguchi & K. Shinozaki, 1995. A gene encoding a phosphatydilnositol-specific phospholipase C is induced by dehydration and salt stress inArabidopsis thaliana.Proceedings of the National Academy of Sciences USA 92: 3903–3907.Google Scholar
  27. Holappa, L.D. & M.K. Walker-Simmons, 1995. The wheat abscisic acid-responsive protein kinase mRNA, pkABA1, is up-regulated by dehydration, cold temperature, and osmotic stress.Plant Physiology 108: 1203–1210.PubMedGoogle Scholar
  28. Holmberg, N. & L. Bulow, 1998. Improving stress tolerance in plants by gene transfer.Trends in Plant Science 3: 61–66.CrossRefGoogle Scholar
  29. Holmstrom, K.O., E. Mantyla, B. Welin, A. Mandal & E.T. Palva, 1996. Drought tolerance in tobacco.Nature 379: 683–684.Google Scholar
  30. Hwang, I. & H.M. Goodman, 1995. AnArabidopsis thaliana root-specific kinase homolog is induced by dehydration, ABA and NaCl.Plant Journal 8: 37–43.CrossRefPubMedGoogle Scholar
  31. Ingram, J. & D. Bartels, 1996. The molecular basis of dehydration tolerance in plants.Annual Review Plant Physiology and Plant Molecular Biology 47: 377–403.Google Scholar
  32. Ishitani, M., L. Xiong, B. Stevenson & J.-Z. Zhu, 1997. Genetic analysis of osmotic and cold stress signal transduction inArabidopsis: interactions and convergence of abscisic aciddependent and abscisic acid-independent pathways.Plant Cell 9: 1935–1949.CrossRefPubMedGoogle Scholar
  33. Ishitani, M., L. Xiong, H. Lee, B. Stevenson & J.-K. Zhu, 1998.HOS1, a genetic locus involved in cold-responsive gene expression inArabidopsis.Plant Cell 10: 1151–1161.CrossRefPubMedGoogle Scholar
  34. Ishizaki-Nishizawa, O., T. Fujii, M. Azuma, K. Sekiguchi, N. Murata, T. Ohtani & T. Toguri, 1996. Low-temperature resistance of higher plants is significantly enhanced by a nonspecific cyanobacterial desaturase.Nature Biotechnology 14: 1003–1011.CrossRefPubMedGoogle Scholar
  35. Jaglo-Ottosen, K.R., S.J. Gilmour, D.G. Zarka, O. Schabenberger & M.F. Thomashow, 1998.Arabidopsis CBF1 overexpression inducescor genes and enhance freezing tolerance.Science 280: 104–106.CrossRefPubMedGoogle Scholar
  36. Jang, H.J., K.T. Pih, S.G. Kang, J.H. Lim, J.B. Jin, H.L. Piao & I. Hwang, 1998. Molecular cloning of a novel Ca2+-binding protein that is induced by NaCl stress.Plant Molecular Biology 37: 839–847.PubMedGoogle Scholar
  37. Jansen, R.C., 1996. Complex plant traits: time for polygenic analysis.Trends in Plant Science 1: 89–94.CrossRefGoogle Scholar
  38. Jonak, C., S. Kiegerl, W. Ligterink, P. Barker, N.S. Huskisson & H. Hirt, 1996. Stress signaling in plants: a mitogen-activated protein kinase pathway is activated by cold and drought.Proceedings of the National Academy of Sciences USA 93: 11274–11279.CrossRefGoogle Scholar
  39. Karakas, B., P. Ozias-Akins, C. Stushnoff, M. Suefferheld & M. Rieger, 1997. Salinity and drought tolerance of mannitol-accumulating transgenic tobacco.Plant Cell Environment 20: 609–616.Google Scholar
  40. Kasuga, K., Q. Liu, S. Miura, K. Yamaguchi-Shinozaki & K. Shinozaki, 1999. Improving plant drought, salt and freezing tolerance by gene transfer of a single stress-inducible transcription factor.Nature Biotechnology 17: 287–291.PubMedGoogle Scholar
  41. Kavi-Kishor, P.B., Z. Hong, G.H. Miao, C.A.A. Hu & D.P.S. Verma, 1995. Over-experession of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants.Plant Physiology 108: 1387–1394.Google Scholar
  42. Kempin, S.A., S.J. Liljegren, L.M. Block, S.D. Rounsley, M.F. Yanofsky & E. Lam, 1997. Targeted disruption inArabidospis.Nature 389: 802–803.CrossRefPubMedGoogle Scholar
  43. Kenward, K.D., M. Altschuler, D. Hildebrand & P.L. Davies, 1993. Accumulation of type I fish antifreeze protein in transgenic tobacco is cold-specific.Plant Molecular Biology 23: 377–385.CrossRefPubMedGoogle Scholar
  44. Kodama, H., T. Hamada, G. Horiguchi, M. Nishimura & K. Iba, 1994. Genetic enhancement of cold tolerance by expression of a gene for chloroplast ω-3 fatty acid desaturase in transgenic tobacco.Plant Physiology 105: 601–605.PubMedGoogle Scholar
  45. Kusano, T., T. Barberich, M. Harada, N. Suzuki & K. Sugawara, 1995. A maize DNA-binding factor with a b-zip motif is induced by low temperature.Molecular General Genetics 248: 507–517.PubMedGoogle Scholar
  46. Lee, J.H., A. Hubel & F. Schoffl, 1995. Derepression of the activity of genetically engineered heat shock factor causes constitutive synthesis of heat shock proteins and increased thermotolerance in transgenicArabidopsis.Plant Journal 8: 603–612.CrossRefPubMedGoogle Scholar
  47. Lee, J.H., M. Van Montagu & N. Verbruggen, 1999. A highly conserved kinase is an essential component for stress tolerance in yeast and plant cells.Proceedings of National Academy of Sciences USA 96: 5873–5877.Google Scholar
  48. Leung, J., M. Bouvier-Durand, P.-C. Morris, D. Guerrier, F. Chefdor & J. Giraudat, 1994.Arabidopsis ABA-response gene AB/1: features of a calcium-modulated protein phosphatase.Science 264: 1448–1452.PubMedGoogle Scholar
  49. Leyman, B., D. Geelen, F.J. Quintero & M.R. Blatt, 1999. A tobacco syntaxin with a role in hormonal control of quard cell ion channels.Science 28: 537–540.Google Scholar
  50. Li, P.H., J.P. Palta & H.H. Chen, 1979. Freezing stress in potato. In: J. Lyons, J. Raison & D. Randall (Eds), Low temperature Stress in Crop Plants. Academic Press, pp. 291–303.Google Scholar
  51. Lilius, G., N. Holmberg & L. Bulow, 1996. Enhanced NaCl stress tolerance in transgenic tobacco expressing bacterial choline dehydrogenase.Biotechnology 14: 177–180.Google Scholar
  52. Liu, Q., M. Kasuga, Y. Sakuma, H. Abe, M. Setsuko, K. Yamaguchi-Shinozaki & K. Shinozaki, 1998. Two transcription factors, DREB1 and DREB2 with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought and low-temperature-responsive gene expression, respectively, inArabidospis.Plant Cell 10: 1391–1406.PubMedGoogle Scholar
  53. Luan, S., 1998. Protein phosphatases and signaling cascades in higher plants.Trends in Plant Science 3: 271–275.CrossRefGoogle Scholar
  54. Maeda, T., S.M. Wurgler-Murphy & H. Saito, 1994. A two-component system that regulates an osmosensing MAP kinase cascade in yeast.Nature 369: 242–245.CrossRefPubMedGoogle Scholar
  55. Magaraggia, F., G. Solinas, G. Valle, G. Giovinazzo & I. Coraggio, 1997. Maturation and translation mechanism involved in the expression of amyb gene of rice.Plant Molecular Biology 35: 1003–1008.CrossRefPubMedGoogle Scholar
  56. Martinez-Zapater, J.M., C. Gomez-Mena, C. Alonso, J. Meina, F. Llorente, M. Koornneef & J. Salinas, 1999. Natural variation for freezing tolerance inArabidopsis thaliana (L.) Heyhn. In: Proceedings of the ESF Workshop Adaptation to abiotic stress: tolerance and avoidance, Kevo Subartctic Research Institute, Finland, Sept 15–19, 1999, pp. 2.Google Scholar
  57. McKersie, B.D., S.R. Bowley & K.S. Jones, 1996. Winter survival of transgenic alfalfa overexpressing superoxide dismutase.Plant Physiology 119: 839–848.Google Scholar
  58. Medina, J., M. Bargues, J. Terol, M. Perez-Alonso & J. Salinas, 1999. TheArabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration.Plant Physiology 119: 463–469.CrossRefPubMedGoogle Scholar
  59. Meyer, K., M.P. Leube & E. Grill, 1994. A protein phosphatase 2C involved in ABA signal transduction inArabidopsis thaliana.Science 264: 1452–1455.PubMedGoogle Scholar
  60. Mitten, D.H., M. Horn, K.S. Blundy, 1990. Strategies for potato transformation and regeneration. In: M.E. Vayada & W.D. Park (Eds), The molecular and cellular biology of the potato. Redwood Press Ltd. Melkshom, pp. 181–191.Google Scholar
  61. Mizoguchi, T., K. Ichimura & K. Shinozaki, 1997. Environmental stress response in plants: the role of mitogen-activated protein kinases.Trends in Biotechnology 15: 15–19.CrossRefPubMedGoogle Scholar
  62. Mizoguchi, T., K. Irie, T. Hiratyama, N. Hayashida, K. Yagamuchi-Shinozaki, K. Matsumato & K. Shinozaki, 1996. A gene encoding a MAP kinase kinase kinase induced simultaneously with genes for a MAP kinase and an S6 kinase by touch, cold and water stress inArabidopsis thaliana.Proceedings of National Academy of Sciences USA 93: 765–776.Google Scholar
  63. Mizoguchi, T., N. Hayashida, K. Yamaguchi-Shinozaki, H. Kamada & K. Shinozaki, 1995. Two genes that encode ribosomal protein S6 kinase homologs are induced by cold or salinity stress inArabidopsis thaliana.FEBS Letters 358: 199–204.CrossRefPubMedGoogle Scholar
  64. Murata, N., O. Ishizaki-Nishizawa, S. Higashi, H. Hayashi, Y. Tasaka & I. Nishida, 1992. Genetically engineered alteration in the chilling sensitivity of plants.Nature 356: 710–713.CrossRefGoogle Scholar
  65. Nanjo, T., M. Kobayashi, Y. Yoshiba, Y. Kakubari, K. Yamaguchi-Shinozaki & K. Shinozaki, 1999. Antisense suppression of proline degradation improves tolerance to freezing and salinity inArabidopsis thaliana.FEBS Letters 461: 205–210.CrossRefPubMedGoogle Scholar
  66. Nuccio, M.L., D. Rhodes, S.D. McNeil & A.D. Hanson, 1999. Metabolic engineering of plants for osmotic stress resistance.Current Opinions in Plant Biology 2: 128–134.Google Scholar
  67. Palta, J.P., B.D. Whitaker & L.S. Weiss, 1993. Plasma membrane lipids associated with genetic variability in freezing tolerance and cold acclimation ofSolanum species.Plant Physiology 103: 793–803.PubMedGoogle Scholar
  68. Pardo, J.M., M.P. Reddy, S. Yang, A. Maggio, G.H. Huh, T. Matsumoto, M.A. Coca, M. Paino-D'Urzo, H. Koiwa, D.J. Yun, A.A. Watad, R.A. Bressan & M. Hasegawa, 1998. Stress signalling through Ca2+/calmodulin-dependent protein phosphatase calcineurin mediates salt adaptation in plants.Proceedings of the National Academy of Sciences, USA 95: 9681–9686.CrossRefGoogle Scholar
  69. Pilon-Smits, E.A.H., M.J.M. Ebskamp, M.J. Paul, M.J.W. Jenken, P.J. Weisbeek & S.C.M. Smeekens, 1995. Improved performance of transgenic fructan-accumulating tobacco under drought stress.Plant Physiology 107: 125–130.PubMedGoogle Scholar
  70. Quintero, F.J., B. Garciadeblas & A. Rodriguez-Navarro, 1996. The SAL1 gene ofArabidopsis, encoding an enzyme with 3′(2′), 5′biphosphate nucleotidases and inisitol polyphosphate I-phosphatase activities, increases salt tolerance in yeast.Plant Cell 8: 529–537.CrossRefPubMedGoogle Scholar
  71. Romero, C., J.M. Belles, J.L. Vaya, R. Serrano & F.A. Culianez-Macia, 1997. Expression of the yeast trehalose-6-phosphate synthase gene in transgenic tobacco plants: pleiotropic phenotypes include drought tolerance.Planta 201: 293–297.CrossRefGoogle Scholar
  72. Rouzé, P., N. Pavy & S. Rombauts, 1999. Genome annotation: which tools do we have for it?Current Opinions in Plant Biology 2: 90–96.Google Scholar
  73. Roxas, V.P., R.K. Smith, E.R. Allen & R.D. Allen, 1997. Overexpression of glutathione S-trasferase/glutathione peroxidases enhances the growth of transgenic tobacco seedling during stress.Nature Biotechnology 15: 988–991.CrossRefPubMedGoogle Scholar
  74. Ruan, Y., J. Gilmore & T. Conner, 1998. TowardsArabidopsis genome analysis: monitoring expression profiles of 1400 genes using cDNA microarrays.Plant Journal 15: 821–823.CrossRefPubMedGoogle Scholar
  75. Schaefer, D.G. & J.P. Zyrd, 1997. Efficient gene targeting in the mossPhyscomitrella patens.Plant Journal 11: 1195–1206.CrossRefPubMedGoogle Scholar
  76. Serrano, R., 1996. Salt tolerance in plants and microorganisms: toxicity targets and defense responses.International Reviews of Cytology 165: 1–52.Google Scholar
  77. Serrano, R., F.A. Culianez-Macia & V. Moreno, 1999. Genetic engeenering of salt and drought tolerance with yeast regulatory genes.Scientia Horticulturae 78: 261–269.Google Scholar
  78. Sheveleva, E., W. Chmara, H.J. Bohnert & R.G. Jensen, 1997. Increased salt and droght tolerance by D-ononitol production in transgenicNicotiana tabacum L.Plant Physiology 115: 1211–1219.PubMedGoogle Scholar
  79. Shinozaki, K. & K. Yamaguchi-Shinozaki, 1997. Gene expression and signal transduction in water-stress response.Plant Physiology 115: 327–334.CrossRefPubMedGoogle Scholar
  80. Slooten, L., K. Capian, W. Van Camp, M. Van Montagu, C. Sybesma & D. Inzé, 1995. Factors affecting the enhancement of oxidative stress dismutase in chloroplasts.Plant Physiology 107: 737–750.PubMedGoogle Scholar
  81. Smith, R.D. & J.C. Walker, 1996. Plant protein phosphatases.Annual Review Plant Physiology and Plant Molecular Biology 47: 101–125.Google Scholar
  82. Soderman, E., J. Mattsson & P. Engstrom, 1996. TheArabidopsis homeobox gene ATHB-7 is induced by water deficit and by abscisic acid.Plant Journal 10: 375–381.CrossRefPubMedGoogle Scholar
  83. Somerville, C. & S. Somerville, 1999. Plant Functional Genomics.Science 285: 380–383.CrossRefPubMedGoogle Scholar
  84. Stockinger, E.J., S.J. Gilmour & M.F. Thomashow, 1997.Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit.Proceedings of the National Academy of Sciences USA 94: 1035–1040.CrossRefGoogle Scholar
  85. Thomas, J.C., M. Sepahi, B. Arendall & H.J. Bohnert, 1995. Enhancement of seed germination in high salinity by engineering mannitol expression inArabidopsis thaliana.Plant Cell Environment 18: 801–806.Google Scholar
  86. Thomashow, M.F., 1998. Role of cold-responsive genes in plant freezing tolerance.Plant Physiology 118: 1–7.CrossRefPubMedGoogle Scholar
  87. Urao, T., K. Yamaguchi-Shinozaki, S. Urao & K. Shinozaki, 1993. AnArabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence.Plant Cell 5: 1529–1539.CrossRefPubMedGoogle Scholar
  88. Urao, T., T. Katagiri, T. Mizoguchi, K. Yamaguchi-Shinozaki, N. Hayashida & K. Shinozaki, 1994. Two genes that encode Ca2+-dependent protein kinases are induced by drought and high-salt stress inArabidopsis thaliana.Molecular General Genetics 224: 331–340.Google Scholar
  89. Urao, T., B. Yakubov, R. Satoh, K. Yamaguchi-Shinozaki, M. Seki, T. Hirayama & K. Shinozaki, 1999. A transmembrane hybrid-type histidine kinase inArabidopsis functions as an osmosensor.Plant Cell 11: 1743–1754.CrossRefPubMedGoogle Scholar
  90. Van Camp, W., K. Capiau, M. Van Montagu, D. Inzé & L. Slooten, 1996. Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide dismutase in chloroplasts.Plant Physiology 112: 1703–1714.PubMedGoogle Scholar
  91. Van der Bienzen, E.A. & J.D.G. Jones, 1998. Plant disease-resistance proteins and the gene-for-gene concept.Trends in Biochemical Science 23: 454–456.Google Scholar
  92. Walbot, V., 1999. Genes, Genomes, Genomics. What can plant biologists expect from the 1998 National Science Foundation Plant Genome Research Program?Plant Physiology 119: 1151–1155.CrossRefPubMedGoogle Scholar
  93. Wallis, J.G., H. Wang & D.J. Guerra, 1997. Expression of a synthetic anti-freeze protein in potato reduce electrolyte release at freezing temperature.Plant Molecular Biology 35: 323–330.CrossRefPubMedGoogle Scholar
  94. Xu, D., X. Duan, B. Wang, B. Hong, T.H. Ho & R. Wu, 1996. Expression of a late embryogenesis abundant protein gene,HVA1, from barley confer tolerance to water deficits and salt stress in rice.Plant Physiology, 110: 249–257.PubMedGoogle Scholar
  95. Xu, Q., H.H. Fu, R. Gupta & S. Luan, 1998. Molecular characterization of a tyrosine-specific protein phosphatase encoded by a stress-responsive gene in Arabidopsis.Plant Cell 10: 849–857.PubMedGoogle Scholar
  96. Zhang, C.S., Q. Lu & D.P. Verma, 1995. Removal of feedback inhibition of delta-1-pyrroline-5-carboxylate synthetase, a bifunctional enzyme catalyzing the first two steps of proline biosynthesis in plants.Journal of Biological Chemistry 270: 20491–20496.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Antonella Leone
    • 1
  • Antonello Costa
    • 1
  • Federica Consiglio
    • 1
  • Immacolata Massarelli
    • 1
  • Emilia Dragonetti
    • 1
  • Monica De Palma
    • 1
  • Stefania Grillo
    • 1
  1. 1.Research Institute for Vegetable and Ornamental Plant BreedingNational Research CouncilPorticiItaly

Personalised recommendations