Potato Research

, Volume 29, Issue 2, pp 191–205 | Cite as

Effects of exogenous applications of cytokinin on the development of potato (Solanum tuberosum L.) cuttings

  • J. J. McGrady
  • P. C. Struik
  • E. E. Ewing
Article

Summary

Application of 6-benzylaminopurine or its riboside to potato cuttings on four successive days was very effective if the treatment started on day 4 after cutting. These cytokinis caused cuttings that were well induced to express a lower level of induction than they actually had received. There was a shift from sessile tuberization of the central bud to non-sessile tuberization of the central bud or to tuberization of ancillary buds, or a shift from ancillary-bud tuberization to swollen shoots. Effects were largest after a moderate induction. If rooting occurred, cytokinin reduced the proportion of rooted cuttings significantly. Cytokinin increased the levels of fructose and glucose in the tubers if it was applied after day 3. Dry weight of the buds was reduced by cytokinin in those cases where it caused suppression of ancillary-bud development.

Additional keywords

tuberization rooting sugars benzylaminopurine (riboside) hormones plant growth regulators 

Zusammenfassung

Es wurden die Einflüsse von 6-Benzylaminopyrin (BAP) oder seines Ribosids (BAPR) auf die Entwicklung der Achselknospen von subapikalen Kartoffelstecklingen untersucht.

Die Achselknospen (Haupt- und Nebenknospen) entwickleten sich zu verschiedenen Formen, bedingt durch den Induktionsgrad derjenigen Kartoffelpflanzen, von denen die Stecklinge stammten oder bedingt durch die Cytokininbehandlung (Abb. 1). Am wirkungsvollsten war die Anwendung von BAP an 4 aufeinanderfolgenden Tagen, wenn die Behandlung am Tag 4 nach dem Schneiden begann (Exp. 1).

Nur 18% der an den Tagen 4–7 behandelten Stecklinge bildeten sessile Knollen, während die Kontrolle sowie frühere und späte Behandlungen zu fast vollständiger Bildung sessiler Knollen führten (Abb. 2). Die meisten der an den Tagen 4–7 behandelten Stecklinge bildeten stattdessen nicht-sessile Knollen. Die BAP-Anwendung an den Tagen 0–3 nach dem Schneiden verzögerte den Wachstumsbeginn, obgleich sie letztlich der Prozentsatz der Bildung sessiler Knollen nicht beeinflusste (Tabelle 1, Abb. 2).

Alle BAP-Behandlungen bewirkten einen Anstieg der Zuckekonzentrationen in den Knollen (Tabelle 2). Dies weist darauf hin, dass Cytokinin die Reife verzögerte, wenn auch das Knospenwachstum dadurch nicht beeinflusst wurde. In drei weiteren Versuchen wurden Stecklinge von Pflanzen, die 3, 6 bzw. 10 mal Langnacht-Bedingungen erhielten, an den Tagen 4–7 nach dem Schneiden mit unterschiedlichen Konzentrationen BAPR behandelt. Nach dreimaliger Langnacht bildeten alle Stecklinge belaubte Sprosse, unabhängig von der BAPR-Konzentration (Abb. 3a). Nach sechsmaliger Langnacht riefen hohe BAPR-Konzentrationen geschwollene, aufrechtstehende Sprosse hervor, gleichzeitig wurde die Bildung von Knollen durch die Nebenknospen verhindert (Abbildungen 3a+3b). Nach 10-maligen Langnacht-Bedingungen bewirkte BAPR einen Wechsel in der Bildung von 100% sessiler Knollen zur Bildung einer Mischung aus sessilen Knollen, nicht-sessilen Knollen, Stolonen und belaubten Sprossen (vgl. Exp. 1). Diese Wirkungen zeigten sich auch an der Knospengrösse (Tabelle 3). Die Wurzelbildung (geschieht normalerweise nur nach geringer Induktion) wurde durch BAPR, besonders in höheren Konzentrationen, unterdrückt (Abb. 4).

Die Wirkungen dieser superoptimalen BAP(R)-Konzentrationen entsprachen denjenigen des Gibberellins, indem sie Stecklinge dazu führten einen geringen Induktionsgrad auf zu weisen.

Résumé

Les effets de 6-benzylaminopurine (BAP) ou de son riboside (BAPR) sur le développement de bourgeons axillaires issus de boutures subapicales de pommes de terre ont été analysés. Les bourgeons axillaires (centraux et accessoires) donnent différentes structures selon le niveau d'induction des plantes sur lesquelles les boutures ont été prélevées ou selon le traitement á base de cytokinine (fig. 1).

L'application de BAP répétée sur quatre jours consécutifs est la plus efficace si le traitement commence quatre jours après prélèvement des boutures (exp. 1). 18% seulement des boutures traitées entre le 4ème et 7ème jour donnent des tubercules sessiles alors que le témoin et les applications plus précoces et plus tardives aboutissent à une tubérisation sessile presque complète (fig. 2).

La plupart des boutures traitée entre le 4éme et le 7ème jour donnent naissance à des tubercules non sessiles. L'application de BAP durant les 3 premiers jours après prél`evement des boutures, retarde le départ de la croissance bien qu'il n'affecte pas le pourcentage final de tubérisation sessile (tableau 1, fig. 2). Tous les traitements avec BAP induisent une augmentation des concentrations en sucres dans les tubercules (tableau 2). Cela suggère que la cytokinine retarde la maturation, même lorsque la croissance des bourgeons n'est pas modifiée.

Dans trois autres expérimentations, des boutures provenant de plantes ayant eu 3, 6 ou 10 nuits de longue durée, sont traitées à différentes concentrations de BAPR entre le 4ème et le 7ème jour après prélèvement. Après 3 nuits de longue durée, toutes les boutures produisent des tiges feuillées, indépendamment de la concentration de BAPR (fig. 3a). Après 6 nuits de longue durée, les fortes concentrations provoquent la formation de tiges renflées et droites tout en empêchant la formation de tubercules par les bourgeons accessoires (fig. 3a+3b). Après 10 nuits de longue durée, le BAPR provoque, au lieu de 100% de tubérisation sessile, un mélange de tubercules sessiles et non sessiles, des stolons et des tiges feuillées (cf. exp. 1). Ces effets se manifestent également au niveau de la taille des bourgeons (tableau 3).

BAPR, spécialement à fortes concentrations (fig. 4), diminue l'enracinement (celuici ayant lieu en général après une induction faible).

Les effets de concentration au-dessus de l'optimum de BAP(R) sont proches des effets des gibberellines; ils conduisent les boutures à un plus faible niveau d'induction.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abeles, F. B., R. E. Holm & H. E. Gahagan, 1967. Abscission: The role of aging.Plant Physiology 42: 1351–1357.Google Scholar
  2. Appleman, C. O. & E. V. Miller, 1926. A chemical and physiological study of maturity in potatoes.Journal of Agricultural Research 33: 569–577.Google Scholar
  3. Bodlaender, K. B. A., C. Lugt & J. Marinus, 1964. The induction of second-growth in potato tubers.European Potato Journal 7: 57–71.CrossRefGoogle Scholar
  4. Boodley, J. W. & R. Sheldrake, Jr., 1973. Cornell peatlite mixes for commercial plant growing.Cornell University Information Bulletin 43, 8 pp.Google Scholar
  5. Duncan, D. A. & E. E. Ewing, 1984. Initial anatomical changes associated with tuber formation on single-node potato (Solanum tuberosum L.) cuttings.Annals of Botany 53: 607–610.Google Scholar
  6. Ewing, E. E., 1978. Critical photoperiod for tuberization: a screening technique with potato cuttings.American Potato Journal 55: 43–53.Google Scholar
  7. Ewing, E. E., 1981. Heat stress and the tuberization stimulus.American Potato Journal 58: 31–49.Google Scholar
  8. Ewing, E. E., 1985. Cuttings as simplified models of the potato plant In: P. H. Li (Ed.), Potato physiology, p. 153–207. Academic Press, New York.Google Scholar
  9. Ewing, E. E., M. B. Lazin, E. T. Rasco & R. L. Plaisted, 1978. Screening for ability to tuberize under long photoperiod or high temperature: a technique employing stem cuttings.Seventh Triennial Conference European Association for Potato Research, Warsaw, Abstracts of Conference Papers, pp. 49–50.Google Scholar
  10. Ewing, E. E., A. H. Senesac & J. B. Sieczka, 1981. Effects of short periods of chilling and warming on potato sugar content and chipping quality.American Potato Journal 58: 633–647.Google Scholar
  11. Ewing, E. E. & P. F. Wareing, 1978. Shoot, stolon and tuber formation on potato (Solanum tuberosum L.) cuttings in response to photoperiod.Plant Physiology 61: 348–353.Google Scholar
  12. Forsline, P. L. & A. R. Langille, 1975. Endogenous cytokinins inSolanum tuberosum as influenced by photoperiod and temperature.Physiologia Plantarum 34: 75–77.Google Scholar
  13. Fuchs, Y. & M. Lieberman, 1968. Effects of kinetin, IAA, and gibberellin on ethylene production, and their interactions in growth of seedlings.Plant Physiology 43: 2029–2036.Google Scholar
  14. Gregory, L. E., 1956. Some factors for tuberization in the potato plant.American Journal of Botany 43: 281–288.Google Scholar
  15. Hammes, P. S. & P. C. Nel, 1975. Control mechanisms in the tuberization process.Potato Research 18: 262–272.CrossRefGoogle Scholar
  16. Iritani, W. M. & L. Weller, 1973. The development of translucent end tubers.American Potato Journal 50: 223–233.Google Scholar
  17. Jameson, P. E., J. A. McWha & R. M. Haslemore, 1985. Changes in cytokinins during initiation and development of potato tubers.Physiologia Plantarum 63: 53–57.Google Scholar
  18. Koda, Y. & Y. Okazawa, 1983a. Influences of environmental, hormonal and nutritional factors on potato tuberizationin vitro.Japanese Journal of Crop Science, 52(4): 582–591.Google Scholar
  19. Koda, Y. & Y. Okazawa, 1983b. Characteristic changes in the levels of endogenous plant hormones in relation to the onset of potato tuberization.Japanese Journal of Crop Science 52(4): 592–597.Google Scholar
  20. Kumar, D. & P. F. Wareing, 1972. Factors controlling stolon development in the potato plant.New Phytologist 71: 639–648.Google Scholar
  21. Kumar, D. & P. F. Wareing, 1974. Studies on tuberization ofSolanum andigena. II. Growth hormones and tuberization.New Phytologist 73: 833–840.Google Scholar
  22. Langille, A. R. & P. L. Forsline, 1974. Influence of temperature and photoperiod on cytokinin pools in the potatoSolanum tuberosum L.Plant Science Letters 2: 189–191.CrossRefGoogle Scholar
  23. Lugt, C., 1960. Second-growth phenomena.European Potato Journal 3: 307–324.CrossRefGoogle Scholar
  24. Lugt, C., K. B. A. Bodlaender & G. Goodijk, 1964. Observations on the induction of second-growth in potato tubers.European Potato Journal 7: 219–227.Google Scholar
  25. Mauk, C. S. & A. R. Langille, 1978. Physiology of tuberization inSolanum tuberosum L.: cis-zeatin riboside in the potato plant: its identification and changes in endogenous levels as influenced by temperature and photoperiod.Plant Physiology 62: 438–442.Google Scholar
  26. McGrady, J. J., 1985. Use of leaf-bud cuttings to study maturity and senescence in potatoes (Solanum tuberosum L.). PhD thesis, Cornell University, Ithaca, N.Y., USA, 157 pp.Google Scholar
  27. McKeon, T. A., N. E. Hoffman & S. F. Yang, 1982. The effect of plant-hormone pretreatments on ethylene production and synthesis of 1-aminocyclopropane-1-carboxylic acid in waterstressed wheat leaves.Planta 155: 437–443.CrossRefGoogle Scholar
  28. Mingo-Castel, A. M., O. E. Smith & J. Kumamoto, 1976. Studies on the carbon dioxide promotion and ethylene inhibition of tuberization in potato explants culturedin vitro.Plant Physiology 57: 480–485.Google Scholar
  29. Mishra, D. & B. Misra, 1973. Retardation of induced senescence of leaf from crop plants by benzimidazole and cytokinins.Experimental Gerontology 8: 235–239.PubMedGoogle Scholar
  30. Mishra, D. & P. K. Pradhan, 1973. Regulation of senescence in detached rice leaves by light, benzimidazole and kinetin.Experimental Gerontology 8: 153–155.PubMedGoogle Scholar
  31. Mothes, K. & L. Engelbrecht, 1961. Kinetin-induced directed transport of substances in excised leaves in the dark.Phytochemistry 1: 58–62.CrossRefGoogle Scholar
  32. Okazawa, Y., 1967. Physiological studies on the tuberization of potato plants.Journal of the Faculty of Agriculture, Hokkaido (imp.) University 55: 267–336.Google Scholar
  33. Paiva, E., R. M. Lister & W. D. Park, 1983. Induction and accumulation of major tuber proteins of potato in stems and petioles.Plant Physiology 71: 161–168.Google Scholar
  34. Palmer, C. E. & O. E. Smith, 1969. Cytokinins and tuber initiation n the potatoSolanum tuberosum.Nature 221: 279–280.Google Scholar
  35. Palmer, C. E. & O. E. Smith, 1970. Effects of kinetin on tuber formation on isolated stolons ofSolanum tuberosum L. culturedin vitro.Plant and Cell Physiology 11: 303–314.Google Scholar
  36. Sachs, T. & K. V. Thimann, 1967. The role of auxins and cytokinins in the release of buds from dominance.American Journal of Botany 54: 136–144.Google Scholar
  37. Smith, O. E. & C. E. Palmer, 1970. Cytokinin-induced tuber formation on stolons ofSolanum tuberosum.Physiologia Plantarum 23: 599–606.Google Scholar
  38. Smith, O. E. & L. Rappaport, 1969. Gibberellins, inhibitors, and tuber formation in the potato,Solanum tuberosum.American Potato Journal 46: 185–191.Google Scholar
  39. Snedecor, G. W. & W. G. Cochran, 1980. Statistical methods, 7th ed. Iowa State University Press, Ames, Iowa, USA, 507 pp.Google Scholar
  40. Sowokinos, J. R., 1973. Maturation ofSolanum tuberosum. I. Comparative sucrose and sucrose synthetase levels between several good and poor processing varieties.American Potato Journal 50: 234–247.Google Scholar
  41. Thimann, K. V., 1980. The senescence of leaves. In: K. V. Thimann (Ed.), Senescence in plants. CRC Press Inc., Boca Raton, Florida, USA, pp. 85–115.Google Scholar
  42. Van Staden, J. & N. A. C. Brown, 1979. Investigations into the possibility that potato buds synthesize cytokinins.Journal of Experimental Botany 30: 391–397.Google Scholar
  43. Wareing, P. F. & I. D. J. Phillips, 1981. Growth and differentiation in plants, 3rd ed. Pergamon Press, Oxford, 343 pp.Google Scholar
  44. Woolley, D. J. & P. F. Wareing, 1972. The interaction between growth promoters in apical dominance. I. Hormonal interaction, movement and metabolism of a cytokinin in rootless cuttings.New Phytologist 71: 781–793.Google Scholar
  45. Wright, S. T. C., 1980. The effect of plant growth regulator treatments on the levels of ethylene emanating from excised turgid and wilted wheat leaves.Planta 148: 381–388.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1986

Authors and Affiliations

  • J. J. McGrady
    • 1
  • P. C. Struik
    • 1
  • E. E. Ewing
    • 1
  1. 1.Department of Vegetable CropsCornell UniversityIthacaUSA

Personalised recommendations