Skip to main content
Log in

Analysis of bifurcation points and nontrivial branches of solutions to the stationary Vlasov-Maxwell system

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

For the Vlasov-Maxwell system, sufficient conditions are obtained for the existence of bifurcation points λ0 ∈ℝ+ corresponding to distribution functions of the form

$$f_i (r, v) = \lambda \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{f} _i \left( { - \alpha _i v^2 + \varphi _i (r),vd_i + \psi _i (r)} \right)$$

.

It is assumed that the values of the scalar and vector potentials of the electromagnetic field are prescribed at the boundary of the domainD⊂ℝ3 in the form ρ|D =0,j|∂D=0, where ρ is the charge density andj is the current density. The bifurcation equation is derived and studied for the solutions. The asymptotics of nontrivial solutions of the Vlasov-Maxwell system is constructed in a neighborhood of the bifurcation point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Glassey and W. Strauss, “Singularity formation in a collisionless plasma could occur only at high velocities,”Arch. Rational Mech. Anal.,92, 59–90 (1986).

    Article  MathSciNet  Google Scholar 

  2. J. Schaeffer, “The classical limit of the relativistic Vlasov-Maxwell system,”Comm. Math. Phys.,104, 403–421 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  3. R. Glassey and W. Strauss, “Absence of shocks in an initially dilute collisionless plasma”,Comm. Math. Phys.,113, 191–208 (1987).

    Article  MathSciNet  Google Scholar 

  4. R. Glassey and J. Schaeffer, “Global existence for the relativistic Vlasov-Maxwell system with nearly neutral initial data”,Comm. Math. Phys.,119, 353–384 (1988).

    Article  MathSciNet  Google Scholar 

  5. G. Rein, “Generic global solutions of the relativistic Vlasov-Maxwell system of plasma physics”,Comm. Math. Phys.,135, 41–78 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  6. Y. Guo, “Global weak solutions of the Vlasov-Maxwell system with boundary conditions”,Comm. Math. Phys.,154, 245–263 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  7. N. B. Abdallah, “Weak solutions of the initial-boundary value problem for the Vlasov-Poisson system”,Math. Methods Appl. Sci.,17, 451–476 (1994).

    MATH  MathSciNet  Google Scholar 

  8. V. V. Vedenyapin, “On classification of stationary solutions of the Vlasov equation on the torus and a boundary value problem”,Dokl. Ross. Akad. Nauk [Russian Acad Sci. Dokl. Math.],323, No 6, 1004–1006 (1992).

    MATH  MathSciNet  Google Scholar 

  9. J. Dolbeault, “Classification des solutions stationnaires axisymétriques régulières du système de Vlasov-Maxwell”,Math. Probl. Mech., (1995) (to appear).

  10. C. Greengard and P. A. Raviart, “A boundary-value problem for the stationary Vlasov-Poisson equations. The plane diode”,Comm. Pure Appl. Math.,43, 473–507 (1990).

    MathSciNet  Google Scholar 

  11. D. Gogny and P. L. Lions, “Sur lesétats d'équilibre pour les densités éléctroniques dans les plasmas”,Math. Model. Numer. Anal.,23, No 1, 137–153 (1989).

    MathSciNet  Google Scholar 

  12. P. Degond,The Child-Langmuir Flow in the Kinetic Theory of Charged Particles Part 1. Electron Flows in Vacuum, Prépubl. Mathématiques pour l'Industrie et la Physique C.N.R.S. UFR MIG, Univ. Paul Sabatier, France (1994).

    Google Scholar 

  13. J. Weckler, “The Vlasov-Poisson system on a bounded domain,” in:Abstracts of International Conf. “Nonlinear Equations in Many-Particle Systems”, Mathematisches Forschungsinstitut, Oberwolfbach (1993), p. 12.

  14. V. P. Maslov, “On an integral equation of the formu(x)=F(x)+∫G(x, ξ)u k/2+ (ξ)dξ/∫u k/2+ (ξ)”,Funktsional. Anal. i Prilozhen. [Functional Anal. Appl.],28, No 1, 41–50 (1994).

    MATH  MathSciNet  Google Scholar 

  15. V. A. Trenogin,Functional Analysis [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  16. M. M. Vainberg and V. A. Trenogin,The Bifurcation Theory of Solutions of Nonlinear Equations [in Russian], Nauka, Moscow (1986).

    Google Scholar 

  17. J. P. Holloway and J. J. Dorning, “Nonlinear but small amplitude longitudinal plasma waves”,Oper. Theory Adv. Appl.,51, 155–179 (1991).

    MathSciNet  Google Scholar 

  18. J. P. Holloway,Longitudinal travelling waves bifurcating from Vlasov plasma equilibria, Ph. D. Dissertation in Engineering Physics, Univ. of Virginia, Charlottesville (1989).

    Google Scholar 

  19. M. Hesse and K. Schindler, “Bifurcation of current sheets in plasmas”,Phys. Fluids,29, No 8, 2484–2492 (1986).

    MathSciNet  Google Scholar 

  20. L. D. Kudryavtsev,A Course of Mathematical Analysis [in Russian], Vol. 2, Vysshaya Shkola, Moscow (1981).

    Google Scholar 

  21. O. A. Ladyzhenskaya and N. N. Ural'tzeva,Linear and Nonlinear Equations of elliptic type [in Russian], Nauka, Moscow (1964).

    Google Scholar 

  22. V. A. Trenogin and N. A. Sidorov, “Analysis of bifurcation points and continuous branches of the solutions of nonlinear equations”, in:Differential and Integral Equations [in Russian], No. 1, Irkutsk State Univ., Irkutsk (1972), pp. 216–248.

    Google Scholar 

  23. Y. Markov, G. Rudykh, N. Sidorov, A. Sinitsyn and D. Tolstonogov, “Steady-state solutions of the Vlasov-Maxwell system and their stability”,Acta Appl. Math.,28, 253–293 (1992).

    Article  MathSciNet  Google Scholar 

  24. N. A. Sidorov and V. A. Trenogin,Bifurcation Points and Surfaces of Nonlinear Operators With Potential Bifurcation Systems [in Russian], Preprint, Irkutsk Computer Center of the Russian Academy of Scciences Irkutsk (1991).

    Google Scholar 

  25. B. A. Dubrovin, S. P. Novikov and A. T. Fomenko,Modern Geometry [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  26. L. Kronecker, “Über Systeme von Functionen mehrerer Variabels”, in:Monatsberichte de l'Academie, Berlin (1869), pp. 159–198.

  27. C. C. Conley, “Isolated invariant sets and the Morse index”, in:CBMS Regional Conf. Ser. in Math., Vol. 38, Conf. Board Math. Sci., Washington (1978).

  28. E. Rothe, “Type numbers and critical points”,Math. Nachr.,4, 12–27 (1950–1951).

    MathSciNet  Google Scholar 

  29. N. A. Sidorov,Generic Regularization Problems in Bifurcation Theory [in Russian], Irkutsk State Univ., Irkutsk (1982).

    Google Scholar 

  30. B. V. Loginov and N. A. Sidorov, “Group symmetry of the Lyapunov-Schmidt branching equations and iterative methods in a bifurcation point problem”,Mat. Sb. [Math. USSR-Sb.],182, No. 5, 681–691 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated fromMatematicheskie Zametki, Vol. 62, No. 2, pp. 268–292, August, 1997.

Translated by A. M. Chebotarev

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sidorov, N.A., Sinitsyn, A.V. Analysis of bifurcation points and nontrivial branches of solutions to the stationary Vlasov-Maxwell system. Math Notes 62, 223–243 (1997). https://doi.org/10.1007/BF02355910

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02355910

Key words

Navigation