Journal of Mathematical Sciences

, Volume 85, Issue 6, pp 2287–2301 | Cite as

On some nonlinear problems in mathematical physics with exponents close to critical ones

  • A. S. Kalashnikov
Article
  • 21 Downloads

Abstract

The paper deals with several problems having the following common feature. The differential equation under consideration contains a power function of the solution or of its gradient, with the exponent depending on a small parameter. This dependence is such that a certain property of the solutions corresponding to the positive values of the parameter may disappear as the latter tends to zero. This phenomenon is shown to be lacking in the case where not only the said exponent, but also the coefficients of the equation depend on the small parameter in a suitable way. Several theorems are proved on sharp conditions, ensuring such uniformity of various properties exhibited by the solutions. Bibliography: 44 titles.

Keywords

Differential Equation Mathematical Physic Power Function Small Parameter Nonlinear Problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. S. Leibenzon,Motion of Natural Fluids and Gases in a Porous Medium [in Russian], Gostekhizdat, Moscow (1947).Google Scholar
  2. 2.
    H. Schlichting,Boundary Layer Theory, McGraw-Hill, New York-Toronto-London (1968).Google Scholar
  3. 3.
    M. E. Gurtin and R. C. MacCamy, “On the diffusion of biological populations,”Math. Biosciences,33, No. 1, 35–49. (1977).MathSciNetGoogle Scholar
  4. 4.
    Ya. B. Zel'dovich and A. S. Kompaneets, “On the theory of heat propagation with the heat conductivity depending on the temperature,” in:Collection in Honour of the 70th Birthday of Academician A. F. Ioffe, Izd. Akad. Nauk SSSR, Moscow (1950), pp. 61–71.Google Scholar
  5. 5.
    H. Breźis, “On some nonlinear degenerate parabolic equations,” in:Nonlinear Functional Analysis (Proc. Symp. Pure Math. Chicago, 1968,18, Part 1), Amer. Math. Soc., Providence (1970), pp. 28–38.Google Scholar
  6. 6.
    O. A. Oleinik, “On the equations of unsteady filtration type,”Dokl. Akad. Nauk SSSR,113, No. 6, 1210–1213 (1957).MATHMathSciNetGoogle Scholar
  7. 7.
    A. S. Kalashnikov, “Some problems of the qualitative theory of nonlinear second-order degenerate parabolic equations,”Usp. Mat. Nauk,42, No. 2, 135–176 (1987).MATHMathSciNetGoogle Scholar
  8. 8.
    J.-L. Lions,Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires Dunod, Gauthier-Villars, Paris (1969).Google Scholar
  9. 9.
    J. I. Diaz,Nonlinear Partial Differential Equations and Free Boundaries. Volume 1 (Research Notes in Mathematics,106), Pitman, London (1985).Google Scholar
  10. 10.
    N. V. Krylov,Non-linear Second-Order Elliptic and Parabolic Equations [in Russian], Nauka, Moscow (1985).Google Scholar
  11. 11.
    S. N. Antontsev,Localization for Solutions of Degenerate Equations in Mechanics of Continua [in Russian], Institute of Hydrodynamics, Novosibirsk (1986).Google Scholar
  12. 12.
    A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, and A. P. Mikhailov,Blow-up in Quasi-linear Parabolic Equations [in Russian], Nauka, Moscow (1987). English translation: Walter de Gruyter, Berlin (1994).Google Scholar
  13. 13.
    A. Friedman,Variational Principles and Free-Boundary Problems, John Wiley and Sons, New York (1982).Google Scholar
  14. 14.
    M. Bertcsh and L. A. Peletier,Porous Media Equations: an Overview, Math. Inst. Leiden, Univ. of Leiden, Report No. 7 (1983).Google Scholar
  15. 15.
    D. G. Aronson, “The porous medium equation,”Lect. Notes Math. 1224, 1–46 (1986).MATHMathSciNetGoogle Scholar
  16. 16.
    O. A. Oleinik, M. Primicerio, and E. V. Radkevich, “Stefan-like problems,”Meccanica,28, 129–143 (1993).CrossRefGoogle Scholar
  17. 17.
    A. V. Ivanov, “Quasi-linear parabolic equations with possible double degeneracy,”Algebra Analiz,4, No. 6 114–130 (1992).MATHGoogle Scholar
  18. 18.
    J. I. Diaz and L. Véron, “Local vanishing properties of solutions of elliptic and parabolic quasi-linear equations,”Trans. Amer. Math. Soc.,20, No. 2, 787–814 (1985).Google Scholar
  19. 19.
    E. S. Sabinina, “On a class of nonlinear degenerate parabolic equations,”Dokl. Akad. Nauk SSSR,143, No. 4, 794–797 (1962).MATHMathSciNetGoogle Scholar
  20. 20.
    S. N. Antontsev and J. I. Diaz, “New results on the localization for solutions of nonlinear elliptic and parabolic equations via the energy method,”Dokl. Akad. Nauk SSSR,303, No. 3, 524–529 (1988).Google Scholar
  21. 21.
    M. Tsutsumi, “On solutions of some doubly nonlinear degenerate parabolic equations with absorption,”J. Math. Anal. Appl.,132, No. 1, 187–212 (1988).MATHMathSciNetGoogle Scholar
  22. 22.
    Y. C. Kwong, “Asymptotic behavior of a plasma type equation with finite extinction,”Arch. Rat. Mech. Anal.,104, No. 3, 277–294 (1988).MATHMathSciNetGoogle Scholar
  23. 23.
    Song Binghehg,The Existence, Uniqueness and Properties of Solutions of a Degenerate Parabolic Equation with Diffusion-Advection-Absorption, Science Report No. 88005, Department of Applied Math., Tsinghua University, Beijing (1988).Google Scholar
  24. 24.
    A. Friedman and M. A. Herrero, “Extinction and positivity for a system of semilinear parabolic variational inequalities,”J. Math. Anal. Appl.,167, No. 1, 167–175 (1992).MathSciNetGoogle Scholar
  25. 25.
    S. N. Antontsev and S. I. Shmarev, “The local energy method and vanishing of weak solutions of nonlinear parabolic equations,”Dokl. Akad. Nauk SSSR,318, No. 4, 777–780 (1991).MathSciNetGoogle Scholar
  26. 26.
    V. V. Chistyakov, “On properties of solutions of semilinear second-order parabolic equations,”Trudy Seminara imeni I. G. Petrovskogo, No. 15, 70–107 (1991).MATHMathSciNetGoogle Scholar
  27. 27.
    R. Kersner and F. Nicolosi, “The nonlinear heat conduction with absorption: effects of variable coefficients,”J. Math. Anal. Appl.,170, No. 2, 551–566 (1992).MathSciNetGoogle Scholar
  28. 28.
    J. J. L. Velazquez, V. A. Galaktionov S. A. Posashkov, and M. A. Herrero, “On a general approach to extinction and blow-up for quasi-linear heat equations,”Zh. Vychisl. Mat. Mat. Fiz.,33, No. 2, 246–258 (1993).MathSciNetGoogle Scholar
  29. 29.
    V. A. Galaktionov and J. L. Velazquez, “Extinction for a quasi-linear heat equation with absorption. I. Technique of intersection comparison,”Commun. Part. Diff. Eq.,19, No.7&8, 1075–1106 (1994).Google Scholar
  30. 30.
    A. S. Kalashnikov, “Nonlinear phenomena in nonstationary processes described by asymptotically linear equations,”Differents. Uravn.,29, No. 3, 381–391 (1993).MATHMathSciNetGoogle Scholar
  31. 31.
    Yu. G. Rykov, “On the propagation of perturbations for essentially nonautonomous quasi-linear first-order equations,”Trudy Seminara imeni I. G. Petrovskogo, No. 17, 89–117 (1994).MATHMathSciNetGoogle Scholar
  32. 32.
    L. K. Martinson and K. B. Pavlov, “On the problem of spatial localization of thermal perturbations in the theory of nonlinear heat conduction,”Zh. Vychisl. Mat. Mat. Fiz.,12, No. 4 1048–1053 (1972).MathSciNetGoogle Scholar
  33. 33.
    M. Mimura and T. Nagai,Asymptotic behavior of the interface to a certain nonlinear diffusion-advection, equation, Nonlinear Parabolic Equations: Qualitative Properties of Solutions (Research Notes in Mathematics,149), Longman, Harlow (1987), pp. 156–161.Google Scholar
  34. 34.
    B. H. Gilding, “Localization of solutions of a nonlinear Fokker-Planck equation with Dirichlet boundary conditions,”Nonlinear Analysis,13, No. 10, 1215–1240 (1989).MATHMathSciNetGoogle Scholar
  35. 35.
    G. Gagneux and M. Madaune-Tort, “Three-dimensional solutions of nonlinear degenerate diffusion-convection processes,”Eur. J. Appl. Math.,2, No. 2, 171–187 (1991).MathSciNetGoogle Scholar
  36. 36.
    R. Natalini and A. Tesei “On a class of perturbed conservation laws,”Adv. Appl. Math.,13, 429–453 (1992).CrossRefMathSciNetGoogle Scholar
  37. 37.
    U. G. Abdullaev, “Localization of unbounded solutions of a nonlinear heat equation with convection,”Dokl. Akad. Nauk,329, No. 3, 535–537 (1993).MATHMathSciNetGoogle Scholar
  38. 38.
    E. M. Landis, “On the ‘dead core’ for semilinear degenerate elliptic inequalities,”Differents. Uravn.,29 No. 3, 414–423 (1993).MATHMathSciNetGoogle Scholar
  39. 39.
    S. G. Krein and M. I. Khazan, “Differential equations in Banach space,”Itogi Nauki i Tekhniki. Mat. Analiz,21 130–264 (1983).MathSciNetGoogle Scholar
  40. 40.
    A. Friedman and K. Höllig, “On the mesa problem,”J. Math. Anal. Appl.,132, No. 1 564–571 (1987).Google Scholar
  41. 41.
    Ph. Bénilan, L. Boccardo, and M.A. Herrero, “On the limit of solutions ofu t = Δu m asm → ∞”,Rend. Sem. Math. Univ. Politecn. (Torino), Fasc. spec., 1–13 (1989).Google Scholar
  42. 42.
    A. S. Kalashnikov, “Perturbation of critical exponents in some nonlinear problems of mathematical physics,”Dokl. Akad. Nauk,337 No. 3, 320–322 (1994).MATHGoogle Scholar
  43. 43.
    D. G. Aronson, M. G. Crandall, and L. A. Peletier, “Stabilization of solutions of a degenerate nonlinear diffusion problem,”Nonlin Anal.,6, No. 10, 1001–1022 (1982).MathSciNetGoogle Scholar
  44. 44.
    G. I. Barenblatt, “On some unsteady motions of fluids and gases in porous media,”Prikl. Mat. Mekh.,16, No. 1, 67–78 (1952).MATHMathSciNetGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • A. S. Kalashnikov

There are no affiliations available

Personalised recommendations