Neuroscience and Behavioral Physiology

, Volume 24, Issue 2, pp 216–222 | Cite as

Is the electrical activity of the brain always electrical? (The factors forming the potential of the metallic electrode during its direct contact with the brain)

  • T. B. Shvets-Ténéta-Gurii
  • M. R. Novikova
  • I. N. Tveritskaya
  • N. M. Khonicheva


This article is devoted to an analysis of the factors forming slow changes in the potential of a metallic electrode coming into direct contact with living tissue. Data are presented in this paper according to which, the electrochemical activity of the tissue also participates, in addition to electrical activity, in the formation of the electrode potential. The article is in the nature of a discussion.


Living Tissue Direct Contact Electrical Activity Electrode Potential Electrochemical Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. A. Aladzhalova,Slow Electrical Processes in the Brain [in Russian], Izd. Akad. Nauk SSSR, Moscow (1962).Google Scholar
  2. 2.
    V. B. Bokarius and N. D. Kozhevnikov, “A method for the recording of superslow physiological processes of the brain and lung of the rabbit in the chronic experiment,”Fiziol. Zhurn SSSR,75, No. 4, 582–585 (1990).Google Scholar
  3. 3.
    V. A. Grigor'ev, “The influence of experimental modulation of the functional state of the hypothalamus on the development of the immune process,”Fiziol. Zh. SSSR,76, No. 10, 1449–1457 (1990).PubMedGoogle Scholar
  4. 4.
    P. Delakhei,The Bilayer and the Kinetics of Electrode Processes [in Russian], Mir, Moscow (1967).Google Scholar
  5. 5.
    V. A. Ilyukhina, Yu. S. Borodkin, and I. A. Lapina,The Superslow Control System of the Brain and Memory [in Russian], Nauka, Leningrad (1983).Google Scholar
  6. 6.
    V. A. Ilyukhina, É. G. Khabaeva, L. I. Nikitina, et al.,Superslow Physiological Processes and Intersystemic Interactions in the Organism. Theoretical and Applied Aspects [in Russian], Nauka, Leningrad (1986).Google Scholar
  7. 7.
    G. D. Kuznetsova and V. I. Koroleva,Foci of Stationary Excitation in the Cerebral Cortex [in Russian], Nauka, Moscow (1978).Google Scholar
  8. 8.
    N. E. Kucherenko and V. Voitsitskii,Bioenergetics [in Russian], Vishcha Shkola, Kiev (1982).Google Scholar
  9. 9.
    K. Vetter,Electrochemical Kinetics [Russian translation], Khimiya, Moscow (1967).Google Scholar
  10. 10.
    A. N. Frumkin, V. S. Bagotskii, Z. A. Ioffe, and V. N. Kabanov,The Kinetics of Electrode Processes [in Russian], Izd. Mosk. Gos. Univ., Moscow (1952).Google Scholar
  11. 11.
    T. B. Shvets-Ténéta-Gurii,The Bioelectrochemical Activity of the Brain [in Russian], Nauka, Moscow (1980).Google Scholar
  12. 12.
    T. B. Shvets-Ténéta-Gurii,The Bioelectrochemical Activity of the Brain in Learning [in Russian], Nauka, Moscow (1986).Google Scholar
  13. 13.
    T. B. Shvets-Ténéta-Gurii, V. N. Mats, and O. B. Kovchegova, “Rhythms of slow sleep and wakening in fluctuations of the redox-state potential of the cerebral cortex,”Byull. Éksp. Biol. Medits.,108, No. 9, 259–261 (1989).Google Scholar
  14. 14.
    M. G. Allen, “Aspects of electrochemical investigation of biological phenomena,” in:Top. Bioelectrochem. a. Bioenerg., Vol. 1, Acta Press, Toronto (1976), pp. 37–46.Google Scholar
  15. 15.
    M. N. Berry, “An electrochemical interpretation of metabolism,”FEBS Lett.,134, No. 2, 133–138 (1981).PubMedGoogle Scholar
  16. 16.
    Y. O. M. Bockris, “Electrodes in bioelectrical mechanisms,” in:Bioelectrochemistry, Plenum Press, New York-London (1980), pp. 5–17.Google Scholar
  17. 17.
    W. T. Bresnahan and Ph. Y. Elving, “Electrode technique,”Experientia,36, Fasc. II, 1249–1254 (1980).CrossRefPubMedGoogle Scholar
  18. 18.
    H. Caspers and H. Schulse, “Veränderungen der corticalen Gleichspannung während der natürlichen SchlafWach-Perioden beim Tier,”Pflüg. Arch. Ges. Physiol.,270, No. 2, 103–120 (1959).Google Scholar
  19. 19.
    R. Cooper, J. W. Osselton, and J. S. Show,EEG Technology, Butterworths, London (1969).Google Scholar
  20. 20.
    R. W. De Boer, A. Van Osterum, “Electrical properties of platinum electrodes: impedance measurement and time-domain analysis,”Med. Biol. Eng. Comput.,16, No. 1, 1–9 (1978).PubMedGoogle Scholar
  21. 21.
    J. Garcia Ramos, “Electrochemical potential changes in the cats hippocampus,”Currents in Modern Biol.,1, No. 2, 125–132 (1967).Google Scholar
  22. 22.
    L. A. Geddes,Electrodes and the Measurement of Bioelectrical Events, Wiley Interscience, New York (1972).Google Scholar
  23. 23.
    M. S. Potter, “Electrical effects accompanying the decomposition of organic compounds,”Proc. Roy. Soc. (London), SB84, No. 325, 260–268 (1911).Google Scholar
  24. 24.
    V. Rowland, “A cross referencing method for simultaneous slow and multiple unit potential recording with implanted electrodes,”EEG Clin. Neurophysiol.,67, No. 6, 591–594 (1987).Google Scholar
  25. 25.
    A. Puppi and M. Dely, “Tissue redox-state potential (E0)—as regulator of the physiological processes,”Acta Biol. Acad. Sci. Hung.,34, No. 4, 323–350 (1983).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • T. B. Shvets-Ténéta-Gurii
    • 1
  • M. R. Novikova
    • 1
  • I. N. Tveritskaya
    • 1
  • N. M. Khonicheva
    • 1
  1. 1.Institute of Higher Nervous Activity and NeurophysiologyRussian Academy of SciencesMoscow

Personalised recommendations