Materials Science

, Volume 35, Issue 3, pp 381–388 | Cite as

Distinctive features of fatigue crack growth in 14Mo V63 pipe steel after service

  • O. Z. Student
  • V. Šijaćki-Zeravćić
  • I. D. Skrypnyk
  • H. M. Nykyforchyn
  • B. P. Lonyuk
Article
  • 46 Downloads

Abstract

We study the influence of technological parameters of operation of the bends of steam pipelines made of 14Mo V63 steel on the kinetic characteristics of fatigue crack growth. We show that an increase in the steam pressure in the pipeline determining the stress-strain state of the pipe wall promotes a decrease in the threshold characteristics of crack resistance. The tests carried out for the constant range of the stress intensity factor revealed the acceleration of crack growth in internal layers of the pipe wall for the metal operating under higher service steam pressure and near the external surface of the metal operating under lower service pressure. We propose a mathematical model of growth of grain-boundary cracks at high temperatures. It is assumed that the crack propagates by the mechanism of merging of pores ahead of the crack tip. The appearance and growth of these pores are governed by the vacancy mechanism.

Keywords

Steam Stress Intensity Intensity Factor Stress Intensity Factor Fatigue Crack Growth 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. I. Krutasova,Reliability of the Metal of Power-Generating Equipment [in Russian], Energoizdat, Moscow (1981).Google Scholar
  2. 2.
    V. A. Nakhalov,Reliability of the Bends of Pipes for Thermal Power Plants [in Russian], Énergoizdat, Moscow (1981).Google Scholar
  3. 3.
    A. B. Vainman, R. K. Melekhov, and O. D. Smiyan,Hydrogen Embrittlement of the Components of High-Pressure Vessels [in Russian], Naukova Dumka, Kiev (1981).Google Scholar
  4. 4.
    V. Šijaćki-Zeravćić, A. Marković, Z. Stamenić, D. Milanović and P. Kneźević, “Creep damage occurrence in an inter-superheater steam pipe after 90.000 hours of operation,”Fiz.-Khim. Mekh. Mater.,30, No. 5, 59–64 (1994).Google Scholar
  5. 5.
    H. M. Nykyforchyn, O. Z. Student, B. P. Lonyuk, and D. Milanović, “Damage kinetics in materials for power equipment and its effect on fatigue fracture characteristics,” in:Materials Aging and Component Life Extension: Proc. Int. Symp., Vol. 1, Warley: EMAS, Milan (1995), pp. 1153–1162.Google Scholar
  6. 6.
    O. M. Romaniv, H. M. Nykyforchyn, I. R. Dzioba, O. Z. Student, and B. P. Lonyuk, “Influence of the in-service damage to 12Kh1MF steam pipe steel on the characteristics of its crack growth resistance,”Fiz.-Khim. Mekh. Mater.,34, No. 1, 101–104 (1998).Google Scholar
  7. 7.
    O. Z. Student, “Accelerated method of hydrogen degradation of structural steel,”Fiz.-Khim. Mekh. Mater.,34, No. 4, 45–52 (1998).Google Scholar
  8. 8.
    S. Ya. Yarema,Test Method for the Determination of the Crack Growth Rate and Crack Growth Resistance Under Cyclic Loading, Karpenko Physicomechanical Institute, Ukrainian Academy of Sciences, L'viv (1994).Google Scholar
  9. 9.
    V. I. Kovpak, “Prediction of the residual service life of metallic materials,”Probl. Prochn., No. 10, 95–99 (1981).Google Scholar
  10. 10.
    T. G. Berezina, N. V. Bugai, and I. I. Trunin,Diagnostics and Prediction of the Service Life of the Metal of Power-Generating Equipment [in Russian] Tekhnika, Kiev (1991).Google Scholar
  11. 11.
    RTM 108.031.112-80.A Method for the Evaluation of the Service Life of Bends of the Pipelines [in Russian], Min. Énergomashinostroeniya, Moscow (1981).Google Scholar
  12. 12.
    H. M. Nykyforchyn, O. Z. Student, I. D. Skrypnyk, et al., “High-temperature crack-growth resistance of cast steels for the pipes of reforming furnaces,”Fiz.-Khim. Mekh. Mater.,26, No. 2, 68–74 (1990).Google Scholar
  13. 13.
    M. W. D. Van der Burg, E. Van der Giessen, and R. Brouwer, “Investigation of hydrogen attack of 2.25Cr-1Mo steel,”Metal. Trans. A,15A, 2021–2027, November (1984).Google Scholar
  14. 14.
    I. D. Skrypnyk, “Analytic assessment of the hydrogen-asisted growth of voids under high temperature,”Fiz.-Khim. Mekh. Mater.,33, No. 4, 57–64 (1997).Google Scholar
  15. 15.
    I. D. Skrypnyk and A. H. Nykyforchyn, “Modeling of crack propagation in damaged materials under creep,” in:Materials Aging and Component Life Extension: Proc. Int. Symp., Vol. 2, Warley: EMAS, Milan (1995), pp. 1241–1250.Google Scholar
  16. 16.
    I. D. Skrypnyk and A. H. Nykyforchyn, “Modeling of grain-boundary void growth in materials under high-temperature loading,”Fiz.-Khim. Mekh. Mater.,30, No. 3, 54–65 (1994).Google Scholar
  17. 17.
    I. D. Skrypnyk, “High-temperature voids growth due to grain-boundary diffusion,” in: O. M. Romaniv and S. Ya. Yarema (editors),Fracture Mechanics. Strength and Integrity of Materials, L'viv (1996), pp. 157–158.Google Scholar
  18. 18.
    F. M. Vitovec, “Effect of high-pressure hydrogen environment on the creep behavior of steel,” in:Fracture Problems and Solution in the Energy Industry, Pergamon Press, Oxford (1982), pp. 107–114.Google Scholar
  19. 19.
    V. I. Pokhmurs'kyi and V. B. Fedorov,Influence of Hydrogen on the Diffusion Processes in the Metals [in Ukrainian], Karpenko Physicomechanical Institute, Ukrainian Academy of Sciences, L'viv (1998).Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 2000

Authors and Affiliations

  • O. Z. Student
  • V. Šijaćki-Zeravćić
  • I. D. Skrypnyk
  • H. M. Nykyforchyn
  • B. P. Lonyuk

There are no affiliations available

Personalised recommendations