Mathematical Notes

, Volume 62, Issue 6, pp 675–682 | Cite as

Obstructions to the extension of partial maps

  • S. M. Ageev
  • S. A. Bogatyi


One of the most important problems in topology is the minimization (in some sense) of obstructions to extending a partial map\(Z \leftarrow A\xrightarrow{f}X\), i.e., of a subsetF ⊂ Z/A such thatf can be globally extended to its complement. It is shown that ifZ is a fixed metric space with dimZ ≤ n andp, q ≥−1 are fixed numbers, then obstructions to extending all partial maps\(Z \leftarrow A\xrightarrow{f}X \in LC^p \cap C^4 \) can be concentrated in preselected fairly thin subsets ofZ.

Key words

partial map obstruction to extension Morita filtration selection set-valued lower semicontinuous map Lefschetz conditions connected locally connected spaces covers homotopy polyhedron 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Borsuk,Theory of Retracts, Monografie Matematyczne,44, PWN, Warsaw, (1967).Google Scholar
  2. 2.
    S. T. Hu,Theory of Retracts, Wayne State Univ. Press, Detroit (1965).Google Scholar
  3. 3.
    S. Eilenberg, “Un théorème de dualité,”Fund. Math.,26, 280–282 (1936).MATHGoogle Scholar
  4. 4.
    K. Borsuk, “Un théorème sur les prolongements des transformations”Fund. Math.,29, 161–166 (1937).MATHMathSciNetGoogle Scholar
  5. 5.
    S. A. Bogatyi, “On metric retracts,”Dokl. Akad. Nauk SSSR [Soviet Math. Dokl.],204, No. 3, 522–524 (1972).MATHMathSciNetGoogle Scholar
  6. 6.
    B. T. Levshenko (B. T. Levšenko), “Dimension of metric spaces, and retraction,”Fund. Math.,66, 1–5 (1969/1970).MathSciNetGoogle Scholar
  7. 7.
    V. A. Nikiforov, “Extension of a selection for a multivalued mapping, and the Eilenberg-Borsuk duality theorem,”Vestnik Moskov. Univ. Ser. I Mat. Mekh. [Moscow Univ. Math. Bull.], No.6, 57–59 (1987).MATHMathSciNetGoogle Scholar
  8. 8.
    P. Engelking, “Closed mapping on complete metric spaces,”Fund. Math.,70, 103–107 (1971).MATHMathSciNetGoogle Scholar
  9. 9.
    P. S. Aleksandrov and B. A. Pasynkov,Introduction to Dimension Theory: An Introduction to the Theory of Topological Spaces and the General Theory of Dimension [in Russian], Nauka, Moscow (1973).Google Scholar
  10. 10.
    V. V. Fedorchuk and V. V. Filippov,General Topology: Basic Constructions [in Russian], Izd. Moskov. Univ., Moscow (1988).Google Scholar
  11. 11.
    E. Michael, “Continuous selection. II,”Ann. Math. (2),64, No. 3, 562–580 (1956).MATHMathSciNetGoogle Scholar
  12. 12.
    A. N. Dranishnikov, “The Eilenberg-Borsuk theorem for maps into an arbitrary complex,”Mat. Sb. [Russian Acad. Sci. Sb. Math.],184, No. 4, 82–90 (1994).MathSciNetGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • S. M. Ageev
    • 1
  • S. A. Bogatyi
    • 2
  1. 1.A. S. Pushkin Brest State Pedagogical InstituteBushkinUSSR
  2. 2.M. V. Lomonosov Moscow State UniversityMoscowUSSR

Personalised recommendations