Journal of Mathematical Sciences

, Volume 98, Issue 2, pp 137–201 | Cite as

HilbertC*- andW*-modules and their morphisms

  • V. M. Manuilov
  • E. V. Troitsky


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. N. Luzin,Theory of Functions of a Real Variable [in Russian], Moscow (1948).Google Scholar
  2. 2.
    V. M. Manuilov, “On eigenvalues of a perturbed Schrödinger operator in a magnetic field with irrational magnetic flow,”Funkts. Anal. Prilozh.,28, 57–60 (1994).MATHMathSciNetGoogle Scholar
  3. 3.
    A. Ya. Khelemskii,Banach and Polynormed Algebras. General Theory. Reperesentations. Homologies [in Russian], Nauka, Moscow (1989).Google Scholar
  4. 4.
    C. Anantharaman-Delaroche and J.-F. Havet, “On approximate factorizations of completely positive maps,”J. Funct. Anal.,90, 411–428 (1990).MathSciNetGoogle Scholar
  5. 5.
    S. Baaj and P. Julg, “Théorie bivariante de Kasparov et opérateurs non bornés dans lesC *-modules hilbertiens,”C. R. Acad. Sci. Paris, Sér. 1,296, 875–878 (1983).MathSciNetGoogle Scholar
  6. 6.
    S. Baaj and G. Skandalis, “C *-algèbres de Hopf et théorie de Kasparov équivariante,”K-theory,2, 683–721 (1989).CrossRefMathSciNetGoogle Scholar
  7. 7.
    M. Baillet, Y. Denizeau Y., and J.-F. Havet, “Indice d'une esperance conditionelle,”Compos. Math.,66, 199–236 (1988).MathSciNetGoogle Scholar
  8. 8.
    A. Barut and R. R⩯czka,Theory of Group Representations and Applications, PWN-Polish Scientific Publishers, Warszawa (1977).Google Scholar
  9. 9.
    B. Blackadar,K-Theory for Operator Algebras, Springer-Verlag, New York (1986).Google Scholar
  10. 10.
    D. P. Blecher, “A new approach to HilbertC *-modules,”Math. Ann. 307, 253–290 (1997).CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    D. P. Blecher, “A generalization of Hilbert modules,”J. Funct. Anal.,136, 365–421 (1996).CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    O. Bratteli and D. W. Robinson,Operator Algebras and Quantum Statistical Mechanics, I, Springer-Verlag, New York-Berlin-Heidelberg (1981).Google Scholar
  13. 13.
    L. G. Brown “Stable isomorphism of hereditary subalgebras ofC *-algebras,”Pacific J. Math.,71, 335–348 (1977).MATHMathSciNetGoogle Scholar
  14. 14.
    L. G. Brown, P. Green, and M. A. Rieffel, “Stable isomorphism and strong Morita equivalence ofC *-algebras,”Pacific J. Math.,71, 349–363 (1977).MathSciNetGoogle Scholar
  15. 15.
    A. Connes,Noncommutative Geometry, Academic Press, San Diego (1994).Google Scholar
  16. 16.
    J. Cuntz, “A survey on some aspects of noncommutative geometry,”Jahresbericht der DMV,95, 60–84 (1993).MATHMathSciNetGoogle Scholar
  17. 17.
    J. Dixmier,Les C *-Algèbres et Leurs Représentations, Gauthier-Villars, Paris (1964).Google Scholar
  18. 18.
    J. Dixmier,Les Algèbres d'Operateurs dans l'Espace Hilbertien, Gauthier-Villars, Paris (1969).Google Scholar
  19. 19.
    J. Dixmier and A. Douady, “Champs continus d'espaces Hilbertiens,”Bull. Soc. Math. France,91, 227–284 (1963).MathSciNetGoogle Scholar
  20. 20.
    M. J. Dupré and P. A. Fillmore, “Triviality theorems for Hilbert modules,” In:Topics in Modern Operator Theory. 5th Internat. Conf. on Operator Theory. Timisoara and Herculane (Romania), 1980, Birkhäuser Verlag, Basel-Boston-Stuttgart, (1981), pp. 71–79.Google Scholar
  21. 21.
    G. A. Elliott, K. Saitô, and J. D. M. Wright, “EmbeddingAW *-algebras as double commutants in type I algebras,”J. London, Math. Soc.,28, 376–384 (1983).MathSciNetGoogle Scholar
  22. 22.
    M. Frank, “Self-duality andC *-reflexivity of HilbertC *-modules,”Z. Anal. Anw.,9, 165–176 (1990).Google Scholar
  23. 23.
    M. Frank,Geometrical aspects of Hilbert C *-modules, Københavns Universitet. Matematisk Institut. Preprint Series No. 22 (1993).Google Scholar
  24. 24.
    M. Frank,Hilbert C *-modules and related subjects—a guided reference overview, Leipzig University. ZHS-NTZ preprint No. 13 (1996).Google Scholar
  25. 25.
    M. Frank, V. M. Manuilov, and E. V. Troitsky, “On conditional expectations arising from group actions,”Z. Anal. Anw.,16, 831–850 (1997).MathSciNetGoogle Scholar
  26. 26.
    M. Frank and E. V. Troitsky, “Lefschetz numbers and the geometry of operators inW *-modules,”Funkts. Anal. Prilozh.,30, No. 4, 45–57 (1996).Google Scholar
  27. 27.
    A. Irmatov, “On a new topology in the space of Fredholm operators,”Ann. Global Anal. Geom.,7, No. 2, 93–106 (1989).MATHMathSciNetGoogle Scholar
  28. 28.
    B. E. Johnson, “Centralisers and operators reduced by maximal ideals,”J. London Math. Soc.,43, 231–233 (1968).MATHMathSciNetGoogle Scholar
  29. 29.
    R. V. Kadison and J. R. Ringrose,Fundamentals of the Theory of Operator Algebras, Vol. 1, 2, Grad. Stud. Math. Amer. Math. Soc. (1997).Google Scholar
  30. 30.
    I. Kaplansky, “Modules over operator algebras,”Amer. J. Math.,75, 839–858 (1953).MATHMathSciNetGoogle Scholar
  31. 31.
    M. Karoubi,K-Theory. An Introduction, Springer-Verlag, Berlin-Heidelberg-New York (1978).Google Scholar
  32. 32.
    G. G. Kasparov, “Topological invariants of elliptic operators, I:K-homology,”Izv. Akad. Nauk SSSR, Ser. Mat.,39, 796–838 (1975).MATHMathSciNetGoogle Scholar
  33. 33.
    G. G. Kasparov,Izv. Akad. Nauk SSSR, Ser. Mat.,44, 571–636 (1980).MATHMathSciNetGoogle Scholar
  34. 34.
    G. G. Kasparov, “HilbertC *-modules: Theorems of Stinespring and Voiculescu,”J. Oper. Theory,4, 133–150, (1980).MATHMathSciNetGoogle Scholar
  35. 35.
    G. G. Kasparov, “Novikov's conjecture on higher signatures: the operatorK-theory approach,”Contemp. Math.,145, 79–99 (1993).MATHMathSciNetGoogle Scholar
  36. 36.
    A. Kumjian, “On equivariant sheaf cohomology and elementaryC *-bundles,”J. Oper. Theory,20, 207–240 (1988).MATHMathSciNetGoogle Scholar
  37. 37.
    E. C. Lance, “On nuclearC *-algebras,”J. Funct. Anal.,12, 157–176 (1973).CrossRefMATHMathSciNetGoogle Scholar
  38. 38.
    E. C. Lance, “HilbertC *-modules—a toolkit for operator algebraists,” In:London Math. Soc. Lect. Note, Vol. 210, Cambridge University Press, England (1995).Google Scholar
  39. 39.
    N. P. Landsman, “Rieffel induction as generalized quantum Marsden-Weinstein reduction,”J. Geom. Phys.,15, 285–319 (1995).CrossRefMATHMathSciNetGoogle Scholar
  40. 40.
    H. Lin, “Bounded module maps and pure completely positive maps,”J. Oper. Theory,26, 121–138 (1991).MATHGoogle Scholar
  41. 41.
    H. Lin, “Injective HilbertC *-modules,”Pacif. J. Math.,154, 131–164 (1992).MATHGoogle Scholar
  42. 42.
    B. Magajna, “HilbertC *-modules in which all closed submodules are complemented,”Proc. Amer. Math. Soc.,125, 849–852 (1997).CrossRefMATHMathSciNetGoogle Scholar
  43. 43.
    V. M. Manuilov, “Diagonalization of compact operators in Hilbert modules over, finiteW *-algebras,”Ann. Global Anal. Geom.,13, 207–226 (1995).CrossRefMATHMathSciNetGoogle Scholar
  44. 44.
    J. A. Mingo, “On the contractibility of the general linear group of Hilbert space over aC *-algebra,”J. Integral Equations Operator Theory,5, 888–891 (1982).MATHMathSciNetGoogle Scholar
  45. 45.
    J. Mingo and W. Phillips, “Equivariant triviality theorems for HilbertC *-modules,”Proc. Amer. Math. Soc.,91, 225–230 (1984).MathSciNetGoogle Scholar
  46. 46.
    A. S. Mishchenko, “Banach algebras, pseudodifferential operators and their applications toK-theory,”Usp. Mat. Nauk,34, No. 6, 67–79 (1979).MATHMathSciNetGoogle Scholar
  47. 47.
    A. S. Mishchenko, “Representations of compact groups on Hilbert modules overC *-algebras,”Tr. Mat. Inst. Akad Nauk SSSR,166, 161–176 (1984).MATHMathSciNetGoogle Scholar
  48. 48.
    A. S. Mishchenko and A. T. Fomenko, “The index of elliptic operators overC *-algebras,”Izv. Akad. Nauk SSSR. Ser. Mat.,43, 831–859 (1979).MathSciNetGoogle Scholar
  49. 49.
    G. D. Mostow, “Cohomology of topological groups and solvmanifolds,”Ann. Math.,73, 20–48 (1961).MATHMathSciNetGoogle Scholar
  50. 50.
    G. J. Murphy,C *-Algebras and Operator Theory, Academic Press, San Diego, (1990).Google Scholar
  51. 51.
    F. J. Murray and J. von Neumann, “On rings of operators,”Ann. Math.,37, 116–229 (1936).Google Scholar
  52. 52.
    W. L. Paschke, “Inner product modules overB *-algebras,”Trans. Amer. Math. Soc.,182, 443–468 (1973).MATHMathSciNetGoogle Scholar
  53. 53.
    W. L. Paschke, “The doubleB-dual of an inner product module over aC *-algebra,”Can. J. Math.,26, 1272–1280 (1974).MATHMathSciNetGoogle Scholar
  54. 54.
    W. L. Paschke, “Integrable group actions on von Neumann algebras,”Math. Scand.,40, 234–248 (1977).MATHMathSciNetGoogle Scholar
  55. 55.
    G. K. Pedersen,C *-Algebras and Their Automorphism Groups, Academic Press, London-New York-San Francisco (1979).Google Scholar
  56. 56.
    M. A. Rieffel, “Induced representations ofC *-algebras,”Adv. Math.,13, 176–257 (1974).CrossRefMATHMathSciNetGoogle Scholar
  57. 57.
    M. A. Rieffel, “Morita equivalence forC *-algebras andW *-algebras,”J. Pure, Appl. Alg.,5, 51–96 (1974).CrossRefMATHMathSciNetGoogle Scholar
  58. 58.
    M. A. Rieffel, “Strong Morita equivalence of certain transformation groupC *-algebras,”Math. Ann.,222, 7–22 (1976).CrossRefMATHMathSciNetGoogle Scholar
  59. 59.
    W. Rudin,Functional Analysis, McGraw-Hill, New York (1973).Google Scholar
  60. 60.
    S. Sakai,C *-Algebras and W *-Algebras, Springer-Verlag, Berlin-New York (1971).Google Scholar
  61. 61.
    Yu. P. Solovyov and E. V. Troitsky,C *-Algebras and Elliptic Operators in Differential Topology [in Russian], Factorial, Moscow (1996).Google Scholar
  62. 62.
    M. Takesaki,Theory of Operator Algebras, 1, Springer-Verlag, New York-Heidelberg-Berlin (1979).Google Scholar
  63. 63.
    V. A. Trofimov, “Reflexivity of Hilbert modules over the algebra of compact operators with adjoint identity,”Vestn. Mosk. Univ. Ser. I: Mat.-Mekh., No. 5, 60–64 (1986).MATHMathSciNetGoogle Scholar
  64. 64.
    V. A. Trofimov, “Reflexive and self-dual Hilbert modules over someC *-algebras,”Usp. Mat. Nauk,42, No. 2, 247–248 (1987).MATHMathSciNetGoogle Scholar
  65. 65.
    E. V. Troitsky, “Contractibility of the full general linear group of the Hilbert C*-module,l 2(A),”Funkts. Anal. Prilozh.,20, No. 4, 58–64 (1986).Google Scholar
  66. 66.
    E. V. Troitsky, “The eqivariant index of elliptic operators overC *-algebras,”Izv. Akad. Nauk SSSR, Ser. Mat.,50, No. 4, 849–865 (1986).MathSciNetGoogle Scholar
  67. 67.
    E. V. Troitsky, “Orthogonal complements and endomorphisms of Hilbert modules andC *-elliptic complexes,” In:Novikov Conjectures, Index Theorems and Rigidity, Part 2, London Math. Soc. Lect. Notes Series. Vol. 227 (1995), pp. 309–331.Google Scholar
  68. 68.
    E. V. Troitsky, “Geometry and topology of operators on HilbertC *-modules,”this issue.Google Scholar
  69. 69.
    Y. Watatani,Index for C *-subalgebras (Mem. Amer. Math. Soc., Vol. 424 Providence, AMS (1990).Google Scholar
  70. 70.
    S. L. Woronowicz, “Unbounded elements affiliated withC *-algebras and noncompact quantum groups,”Commun. Math. Phys.,136, 399–432 (1991).CrossRefMATHMathSciNetGoogle Scholar
  71. 71.
    S. L. Woronowicz and K. Napiórkowski, “Operator theory in theC *-algebra framework,”Rep. Math. Phys., 353–371 (1992).Google Scholar
  72. 72.
    N. E. Wegge-Olsen,K-Theory and C *-Algebras, Oxford University Press (1993).Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 2000

Authors and Affiliations

  • V. M. Manuilov
  • E. V. Troitsky

There are no affiliations available

Personalised recommendations