Mathematical Notes

, Volume 61, Issue 3, pp 295–300 | Cite as

Clone classification of dually discriminator algebras with finite support

  • S. S. Marchenkov


Dually discriminator algebras are considered up to clones generated by the algebra operations. In terms of binary relations, all clones of the operators on a finite set that contain the Pixley dual discriminator are efficiently described. As a consequence, a similar clone classification of quasi-primal algebras with finite support is determined.

Key Words

dual discriminator dually discriminator algebra clone closure of a relation conjunction of relations projection of relations identification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Fried and A. F. Pixley, “The dual discriminator function in universal algebra,”Acta Sci. Math.,41, No. 1-2, 83–100 (1979).MathSciNetGoogle Scholar
  2. 2.
    B. Csákány and T. Gavalcová, “Finite homogeneous algebras I,”Acta Sci. Math.,42, No. 1-2, 57–65 (1980).Google Scholar
  3. 3.
    G. Grätzer,Universal Algebra, Van Nostrand, Princeton (1968).Google Scholar
  4. 4.
    K. A. Baker and A. F. Pixley, “Polynomial interpolation and the Chinese remainder theorem for algebraic systems”Math. Z.,143, 165–174 (1975).CrossRefMathSciNetGoogle Scholar
  5. 5.
    S. S. Marchenkov, “Closed classes of self-dual functions of many-valued logic,”Problemy Kibernetiki, No. 36, 5–22 (1979).MATHMathSciNetGoogle Scholar
  6. 6.
    S. S. Marchenkov, “On homogeneous algebras,”Dokl. Akad. Nauk SSSR [Soviet Math. Dokl.],256, No. 4, 787–790 (1981).MATHMathSciNetGoogle Scholar
  7. 7.
    S. S. Marchenkov, “Homogeneous algebras,”Problemy Kibernetiki [in Russian], No.39, 85–106 (1982).MATHMathSciNetGoogle Scholar
  8. 8.
    S. S. Marchenkov, “Classification of algebras with alternating group of automorphisms,”Dokl. Akad. Nauk SSSR [Soviet Math. Dokl.],265, No. 3, 533–536 (1982).MATHMathSciNetGoogle Scholar
  9. 9.
    S. S. Marchenkov, “Classification of algebras with an alternating group of automorphisms,”Mathematical Problems in Kybernetics, No. 2, 100–122 (1989).MATHMathSciNetGoogle Scholar
  10. 10.
    E. Marczewski, “Homogeneous algebras and homogeneous operations,”Fund. Math.,56, 81–103 (1964).MATHMathSciNetGoogle Scholar
  11. 11.
    A. F. Pixley, “The ternary discriminator function in universal algebra,”Math. Ann.,191, 167–180 (1971).CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    V. G. Bondarchuk, L. A. Kaluzhin, V. N. Kotov, and V. N. Kotov, and B. A. Romov, “Galois theory for Post classes,” I, II,Kibernetika [Cybernetics], No.3, 1–10 (1969); No. 5, 1–9 (1969).Google Scholar
  13. 13.
    E. L. Post, “Introduction to a general theory of elementary propositions,”Amer. J. Math.,43, 163–185 (1921).MATHMathSciNetGoogle Scholar
  14. 14.
    E. L. Post.Two-Valued Iterative Systems of Mathematical Logic, Ann. of Math. Stud, Vol. 5, Univ. Press, Princeton (1941).Google Scholar
  15. 15.
    S. V. Yablonskii, G. P. Gavrilov, and V. B. Kudryavtsev,Functions of the Algebra of Logic and the Post Classes [in Russian], Nauka, Moscow (1966).Google Scholar
  16. 16.
    S. S. Marchenkov and A. B. Ugol'nikov,Closed Classes of Boolean Functions, Preprint [in Russian], IPM AN SSSR, Moscow (1990).Google Scholar
  17. 17.
    B. Csákány and T. Gavalcová, “Three-element quasi-primal algebras,”Studia Sci. Math. Hungar.,16, 167–180 (1981).Google Scholar
  18. 18.
    V. A. Taimanov, “Functional systems ofk-valued logic with closure operations of programmed type,”Dokl. Akad. Nauk SSSR [Soviet Math. Dokl.],268, No. 6, 1307–1310 (1983).MathSciNetGoogle Scholar
  19. 19.
    V. D. Solov'ev, “Closed classes ink-valued logic with an operation of branching by predicates,”Diskretnaya Matematika,2, No. 4, 19–25 (1990).Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • S. S. Marchenkov
    • 1
  1. 1.M. V. Keldysh Institute for Applied MathematicsRussian Academy of SciencesRussia

Personalised recommendations