Journal of Mathematical Sciences

, Volume 89, Issue 6, pp 1591–1606 | Cite as

An algorithm for the single-input partial pole assignment problem

  • A. Yu Yeremin
  • N. L. Zamarashkin
  • S. A. Kharchenko
Article
  • 18 Downloads

Abstract

An algorithm for translating unstable eigenvalues of single-input partial pole assignment problems based on rank-one transformations is suggested. Special attention is paid to the practical case where translations are constructed using inexact spectral information provided by the Arnoldi procedure. Estimates of the resulting perturbations of stable and translated poles are derived. These estimates depend on the accuracy of spectral information about the unstable poles. The algorithm proposed is illustrated with numerical examples. Bibliography: 11 titles.

Keywords

Assignment Problem Spectral Information Practical Case Partial Pole Pole Assignment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fr. Chatelin,Spectral Approximation of Linear Operators, Academic Press (1983).Google Scholar
  2. 2.
    Kh. D. Ikramov, “Pole placement for linear stationary systems,” in:Computational Processes and Systems, Vol. 9 (1993), pp. 135–162.Google Scholar
  3. 3.
    E. de Souza and S. P. Bhattacharyya, “Controllability, observability, and the solution ofAX−XB=C,”Linear Algebra Appl.,39, 167–188 (1981).MathSciNetGoogle Scholar
  4. 4.
    S. A. Kharchenko and A. Yu. Yeremin, “Eigenvalue translation based preconditioners for the GMRES(k) method,”Numer. Linear Algebra Appl.,2, 51–77, (1995).CrossRefMathSciNetGoogle Scholar
  5. 5.
    D. S. Watkins and L. Elsner, “Convergence of the algorithms of the decomposition type for the eigenvalue problem,”Linear Algebra Appl.,143, 19–47 (1991).CrossRefMathSciNetGoogle Scholar
  6. 6.
    Y. Saad, “Projection and deflation methods for partial pole assignment in linear state feedback,”IEEE Trans. Automat. Contr.,33, (3), 290–297 (1988).CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    B. N. Datta and Y. Saad, “Arnoldi methods for large Sylvester-like observer matrix equations, and associated algorithms for partial spectrum assignment,”Linear Algebra Appl.,148, 32–51 (1991).MathSciNetGoogle Scholar
  8. 8.
    G. W. Stewart, “Error and perturbation bounds for subspaces associated with certain eigenvalue problems,”SIAM Review,15, (4), 727–764 (1973).CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    E. E. Tyrtyshnikov, “Cauchy-Toeplitz matrices and some applications,”Linear Algebra Appl.,149, 1–18 (1991).CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    J. H. Wilkinson, “Sensitivity of eigenvalues,”Utilitas Math.,25, 5–76 (1984).MATHMathSciNetGoogle Scholar
  11. 11.
    S. A. Kharchenko, A. Yu. Yeremin, and N. L. Zamarashkin, “Iterative solution strategies for solving large sparse automatic control problems. I: Restarted Arnoldi procedure for solving approximate partial eigenvalue assignment problems,” Research Report EM-RR-9/93, Elegant Mathematics, Inc. (USA) (1993).Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • A. Yu Yeremin
  • N. L. Zamarashkin
  • S. A. Kharchenko

There are no affiliations available

Personalised recommendations