Skip to main content
Log in

Polynomial interpolation of operators

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

Necessary and sufficient conditions for the solvability of the polynomial operator interpolation problem in an arbitrary vector space are obtained (for the existence of a Hermite-type operator polynomial, conditions are obtained in a Hilbert space). Interpolational operator formulas describing the whole set of interpolants in these spaces as well as a subset of those polynomials preserving operator polynomials of the corresponding degree are constructed. In the metric of a measure space of operators, an accuracy estimate is obtained and a theorem on the convergence of interpolational operator processes is proved for polynomial operators. Applications of the operator interpolation to the solution of some problems are described. Bibliography: 134 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Albert,Regression and the Moore-Penrose Pseudoinverse, Academic Press, New York (1972).

    Google Scholar 

  2. N. I. Akhiezer and I. M. Glazman,Linear Operator Theory in a Hilbert Space [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  3. N. I. Akhiezer and I. M. Glazman,Lectures on Approximation Theory [in Russian], Nauka, Moscow (1965).

    Google Scholar 

  4. K. I. Babenko,Foundations of Numerical Analysis [in Russian], Nauka, Moscow (1986).

    Google Scholar 

  5. A. V. Babyn, “An iterative method applied directly to the differential equations,”Zh. Vychisl. Mat. Mat. Fiz.,23, No. 4, 771–784 (1983).

    Google Scholar 

  6. I. Besler and I. K. Daugavet, “On the approximation of nonlinear operators by the Volterra polynomials,”Proc. St. Petersburg Mat. Soc., 53–64 (1991).

  7. A. A. Boichuk,Constructive Methods of Analysis of Boundary-Value Problems [in Russian], Naukova Dumka, Kiev (1990).

    Google Scholar 

  8. N. S. Bakhvalov,Numerical Methods [in Russian], Vol. 1, Nauka, Moscow (1973).

    Google Scholar 

  9. R. Bellman,Introduction to Matrix Analysis, Mc-Graw-Hill, New York (1960).

    Google Scholar 

  10. I. S. Berezin and N. P. Zhydkov,Methods of Computations [in Russian], Vol. 1, Fizmatgiz, Moscow (1962).

    Google Scholar 

  11. R. Varga,Functional Analysis and Approximation Theory in Numerical Analysis, Society for Industrial and Applied Mathematics, Philadelphia, Pennsylvania (1971).

    Google Scholar 

  12. N. Wiener,Nonlinear Problems in Random Theory, Wiley, New York (1958).

    Google Scholar 

  13. B. Z. Vulikh,Introduction to Functional Analysis [in Russian], Nauka, Moscow (1967).

    Google Scholar 

  14. F. R. Gantmacher,Matrizenrechung I, II [in German], Berlin (1958, 1959).

  15. I. I. Gikhman and A. V. Skorokhod,Theory of Stochastic Processes [in Russian], Vol. 1, Nauka, Moscow (1971).

    Google Scholar 

  16. V. L. Goncharov,Interpolational Theory and Approximation of Functions [in Russian], Nauka, Moscow (1954).

    Google Scholar 

  17. D. Graupe,Identification of Systems, Krieger, Huntington, New York (1976).

    Google Scholar 

  18. V. K. Dzyadyk,Introduction to the Theory of the Uniform Approximation of Functions by Polynomials [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  19. V. F. Dem'yanov and A. M. RubinovApproximate Methods for Solving Extremum Problems [in Russian], Leningrad University, Leningrad (1968).

    Google Scholar 

  20. S. Director and R. Rohrer,Introduction to System Theory, McGraw-Hill, New York (1972).

    Google Scholar 

  21. E. L. Zhukovski and R. Sh. Liptcer, “On computation of pseudoinverse matrices,”Zh. Vychisl. Mat. Mat. Fiz.,15, No. 2, 489–492 (1975).

    Google Scholar 

  22. L. Zadeh and C. Desoer,Linear System Theory, McGraw-Hill, New York (1970).

    Google Scholar 

  23. V. V. Ivanov,Methods of Computations [in Russian], Naukova Dumka, Kiev (1986).

    Google Scholar 

  24. K. Yosida,Functional Analysis, Springer-Verlag, Berlin (1965).

    Google Scholar 

  25. R. E. Kalman, P. L. Falb, and M. A. Arbib,Topics in Mathematical System Theory, McGraw-Hill, New York (1969).

    Google Scholar 

  26. L. V. Kantorovich and G. P. Akilov,Functional Analysis [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  27. L. Kollatz,Numerische Mathematik [in German], Springer-Verlag, Berlin (1964).

    Google Scholar 

  28. A. N. Kolmogorov and S. V. Fomin,Function Theory and Elements of Functional Analysis [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  29. N. P. Kornejchuk,Extremum Problems of Approximation Theory [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  30. V. I. Krylov, V. V. Bobkov, and P. I. Monastyrnyi,Computational Methods [in Russian], Vol. 2, Nauka, Moscow (1977).

    Google Scholar 

  31. V. B. Kudryavtcev, “On the fullness for functional systems,”Dokl. Akad. Nauk SSSR,257, No. 2, 274–278 (1981).

    MathSciNet  Google Scholar 

  32. P. Lancaster,Theory of Matrices, Academic Press, New York-London (1969).

    Google Scholar 

  33. P. Lévy,Problémes Concrets d'Analyse Fonctionnelle [in French], Gauthier-Villars, Paris (1951).

    Google Scholar 

  34. O. M. Lytvyn,Interlineation of Functions [in Ukrainian], Osnova, Kharkiv (1992).

    Google Scholar 

  35. F.-J. Laurent,Approximation et Optimization [in French], Hermann, Paris (1972).

    Google Scholar 

  36. L. A. Lyusternik and V. I. Sobolev,Elements of Functional Analysis [in Russian], Nauka, Moscow (1965).

    Google Scholar 

  37. V. L. Makarov and V. V. Khlobystov,Spline-Approximation of Functions [in Russian], Vysshaya Shkola, Moscow (1983).

    Google Scholar 

  38. V. L. Makarov, V. V. Khlobystov, and D. D. Chekan, “Some questions on the identification of nonlinear functional systems,”Vychisl. Prikl. Mat., No. 67, 101–106 (1989).

    Google Scholar 

  39. V. L. Makarov and V. V. Khlobystov, “On one approach to the solution of the Uryson model identification problem,”Elektron. Model., No. 4, 12–15 (1988).

    Google Scholar 

  40. V. L. Makarov and V. V. Khlobystov, “Interpolational method for solving the identification problem for a functional system described by Uryson's operator,”Dokl. Akad. Nauk SSSR,300, No. 6, 1332–1336 (1988).

    MathSciNet  Google Scholar 

  41. V. L. Makarov and V. V. Khlobystov, “The Newton-type interpolational formula for nonlinear functionals,”Dokl. Akad. Nauk SSSR,307, No. 3, 534–537 (1989).

    Google Scholar 

  42. V. I. Makarov and V. V. Khlobystov, “On the general structure of polynomial functional interpolants,”Dokl. Akad. Nauk SSSR,318, No. 4, 805–808 (1991).

    MathSciNet  Google Scholar 

  43. V. L. Makarov and V. V. Khlobystov, “Polynomial interpolation of nonlinear functionals,”Dokl. Akad. Nauk SSSR,321, No. 3, 470–473 (1991).

    Google Scholar 

  44. V. L. Makarov and V. V. Khlobystov, “On the general structure of interpolational functional polynomials,”Ukr. Mat. Zh.,43, No. 10, 1361–1367 (1991).

    MathSciNet  Google Scholar 

  45. V. L. Makarov and V. V. Khlobystov, “Polynomial interpolation of operators in Hilbert spaces,”Dokl. Akad. Nauk Rossiisk.,324, No. 4, 742–745 (1992).

    MathSciNet  Google Scholar 

  46. V. L. Makarov and V. V. Khlobystov, “The Hermite interpolation of operators in Hilbert spaces,”Dokl. Akad. Nauk Rossiisk.,327, No. 2, 183–186 (1992).

    Google Scholar 

  47. V. L. Makarov and V. V. Khlobystov, “Polynomial interpolation of operators in vector spaces,”Dokl. Akad. Nauk Rossiisk. 329, No. 2, 135–139 (1993).

    MathSciNet  Google Scholar 

  48. V. L. Makarov and V. V. Khlobystov, “Raising the accuracy of approximations to polynomial operators in Hilbert spaces by interpolation methods,”Dokl. Akad. Nauk Rossiisk.,334, No. 1, 20–22 (1994).

    MathSciNet  Google Scholar 

  49. G. I. Marchuk,Methods of Computational Mathematics [in Russian], Nauka, Novosibirsk (1970).

    Google Scholar 

  50. I. I. Lyashko (ed.),Mathematical Software for the Complicated Experiment [in Russian], Naukova Dumka, Kiev (1985).

    Google Scholar 

  51. M. D. Mesarovic and Ya. Takahara,General Systems Theory: Mathematical Foundations, Academic Press, New York (1975).

    Google Scholar 

  52. K. Mourin,Metody Przestrzeni Hilberta, Pánstwowe Wydawnictwo Naukowe, Warzsawa (1959).

    Google Scholar 

  53. Sh. Ye. Mikeladze,Numerical Methods of Mathematical Analysis [in Russian], Gostekhteoretizdat, Moscow (1953).

    Google Scholar 

  54. V. L. Osipov, “Recovering of a surface possessing continuous curvature and given on a flat point manifold,”Zh. Vychisl. Mat. Mat. Fiz.,32, No. 9, 1387–1399 (1992).

    MATH  MathSciNet  Google Scholar 

  55. W. Porter,Modern Foundations of Systems Engineering, MacMillan, New York (1971).

    Google Scholar 

  56. Yu. V. Prokhorov and Yu. A. Rozanov,Probability Theory [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  57. K. A. Pupkov, V. I. Kapalin, and A. S. Yushchenko,Functional Series in Nonlinear Theory [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  58. G. Ye. Puchkov and Ts. S. Khatiashvili,Criteria and Methods of Object Identification [in Russian], Naukova Dumka, Kiev (1979).

    Google Scholar 

  59. Yu. P. Pytjev, “The pseudoinverse operator. Properties and applications,”Mat. Sb.,118, No. 1, 19–49 (1982).

    MathSciNet  Google Scholar 

  60. S. R. Rao,Linear Statistical Methods and Their Applications [in Russian], Nauka, Moscow (1968).

    Google Scholar 

  61. V. A. Rvachyov,The Theory of R-Functions and Some of Its Applications [in Russian], Naukova Dumka, Kiev (1982).

    Google Scholar 

  62. F. Riesz and B. Szokefalfy-Nagy,Lectures on Functional Analysis, Akadémiai Kiadó, Budapest (1972).

    Google Scholar 

  63. W. Rudin,Principles of Mathematical Analysis, McGraw-Hill, New York (1976).

    Google Scholar 

  64. V. A. Sadovnichij,Operator Theory [in Russian], Moscow State University, Moscow (1979).

    Google Scholar 

  65. A. V. Skorokhod,Integration in a Hilbert Space [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  66. P. I. Sobolevskij, “Interpolation of functionals and some approximate formulas for integrals according to the Gauss measure,”Izv. Akad. Nauk BSSR, Ser. Fiz. Mat. Nauk, No. 2, 5 (1975).

    MATH  Google Scholar 

  67. A. T. Taldykin,Elements of Applied Functional Analysis [in Russian], Vysshaya Shkola, Moscow (1982).

    Google Scholar 

  68. A. P. Torokhtij, “Constructive approximation of nonlinear operators,”Izv. Vuzov., Mat., No. 7, 81–84 (1991).

    MATH  Google Scholar 

  69. V. A. Trenogin,Functional Analysis [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  70. A. F. Turbin, “Formula for semiinverse and pseudoinverse matrix computation,”Zh. Vychisl. Mat. Mat. Fiz.,14, No. 3, 772–776 (1974).

    MATH  MathSciNet  Google Scholar 

  71. S. Ul'm, “On generalized divided differences,”Izv. Akad. Nauk ESSR, Ser. Fiz.-Mat.,16, No. 1; 2, 13; 146 (1967).

    Google Scholar 

  72. S. Ul'm and V. Poll, “On the construction of generalized divided differences,”Izv. Akad. Nauk ESSR, Ser. Fiz.-Mat.,18, No. 1, 100 (1969).

    MathSciNet  Google Scholar 

  73. S. G. Krein (ed.),Functional Analysis [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  74. V. Hutson and J. Pym,Applications of Functional Analysis and Operator Theory, Academic Press, New York-London (1980).

    Google Scholar 

  75. A. S. Householder,Principles of Numerical Analysis, McGraw-Hill, New York (1953).

    Google Scholar 

  76. R. W. Hamming,Numerical Methods for Scientists and Engineers, McGraw-Hill, New York (1973).

    Google Scholar 

  77. R. A. Horn and Ch. R. Johnson,Matrix Analysis, Cambridge University Press, Cambridge-London-New York (1989).

    Google Scholar 

  78. E. Hille and R. Fillips, “Functional analysis,”Amer. Math. Soc. Colloquium Publication,31, No. 81 (1948).

  79. V. V. Khlobystov, “On some properties of extremal parabolic splines,”Vychisl. Prikl. Mat., No. 48, 23–26 (1982).

    MATH  MathSciNet  Google Scholar 

  80. V. V. Khlobystov, “On the problem of eliminating nonuniqueness in phase measurements,”Avtometriya, No. 6, 115–118 (1980).

    MathSciNet  Google Scholar 

  81. V. V. Khlobystov, “On the estimate of the location of sources of signals according to measurements in the nearby field,” in:Modeling and Optimization of Complex Systems [in Russian], Collection of Scientific Papers, Kiev (1985), pp. 91–94.

  82. V. V. Khlobystov, “Estimate of coordinates of signals sources under the spherical wave front,”Kibernetika, No. 1, 9–13 (1986).

    Google Scholar 

  83. V. V. Khlobystov, “Estimates of coordinates of signals sources and systems of measures,”Dokl. Akad. Nauk UkrSSR. Ser. A., No. 7, 68–70 (1987).

    MATH  MathSciNet  Google Scholar 

  84. V. V. Khlobystov, “A smoothing operator polynomial in the Hilbert spaceH(λ),”Obchysl. Prykl. Mat.,77, 27–35 (1993).

    Google Scholar 

  85. V. V. Khlobystov, “Polynomial interpolation of operators in Hilbert spaces,”Obchysl. Prykl. Mat.,77, 44–55 (1993).

    Google Scholar 

  86. S. Schaefer,Topological Vector Spaces, MacMillan, New York (1966).

    Google Scholar 

  87. G. Ye. Shylov and B. L. Gurevitch,Integrals, Measures, and Derivatives [in Russian], Nauka, Moscow (1967).

    Google Scholar 

  88. G. Ye. Shylov and Tyn' Fan-Dyk,Integrals, Measures, and Derivatives on Linear Spaces [in Russian], Nauka, Moscow (1967).

    Google Scholar 

  89. R. E. Edwards,Functional Analysis. Theory and Applications, Holt, Rinehart and Winston, New York (1965).

    Google Scholar 

  90. L. A. Yanovitch,Approximate Evaluation of Continual Integrals by Gauss Measures [in Russian], Nauka y Tekhnika, Minsk (1976).

    Google Scholar 

  91. M. Arroussis, E. Katsoulis, R. L. Moore, and T. T. Trent, “Interpolation problems for ideals in nest algebras,”Math. Proc. Cambridge Philos. Soc.,111, No. 1, 151–160 (1991).

    Google Scholar 

  92. R. E. Barnhill, “Smooth interpolation over triangles,”Comput. Aided Geometric Des., 45–70 (1974).

  93. R. E. Barnhill, G. Birkhoff, and W. Gordon, “Smooth interpolation in triangles,”Approx. Theory, No. 8, 114–128 (1973).

    MathSciNet  Google Scholar 

  94. R. E. Barnhill and J. A. Gregory, “Polynomial interpolation to boundary data on triangles,”Math. Comput.,29, No. 131, 726–735 (1975).

    MathSciNet  Google Scholar 

  95. R. E. Barnhill and L. Mansfield, “Error bounds for smooth interpolation in triangles,”Approx. Theory, No. 11, 306–318 (1974).

    MathSciNet  Google Scholar 

  96. S. A. Billings, “Identification of nonlinear systems — a survey,”IEEE Proc.,127, No. 6, 272–285 (1980).

    MathSciNet  Google Scholar 

  97. Z. Binderman, “Initial operators for generalized invertible operators,”Comment. Math. Prace Mat.,31, 25–37 (1991).

    MATH  MathSciNet  Google Scholar 

  98. G. Birkhoff, M. Schultz, and R. Varga, “Piecewise Hermite interpolation in one and two variables with application to partial differential equations,”Numer. Math., No. 11, 232–256 (1968).

    Article  MathSciNet  Google Scholar 

  99. A. O. Chiacchio, M. C. Matos, and M. S. M. Roversi, “On best approximation by rational and holomorphic mappings between Banach spaces,”Approx. Theory,58, No. 3, 334–351 (1989).

    MathSciNet  Google Scholar 

  100. R. M. de Santis and W. A. Porter, “On time-related properties of nonlinear systems,”SIAM J. Appl. Math.,24, No. 2, 188–206 (1973).

    MathSciNet  Google Scholar 

  101. I. Gansca, “Blending interpolation in curved triangles,”Studia Univ. Babe§-Bolyai Math., No. 27, 65–67 (1982).

    MATH  MathSciNet  Google Scholar 

  102. N. S. Goel, S. C. Matira, and E. W. Montrol,Nonlinear Models of Interacting Populations, Academic Press, New York (1971).

    Google Scholar 

  103. W. Gordon, “Blending function methods for bivariate and multivariate interpolation and approximation,”SIAM J. Numer. Anal., No. 8, 158–177 (1971).

    Article  MATH  MathSciNet  Google Scholar 

  104. W. Gordon and C. Hall, “Transfinite element methods: blending function interpolation over arbitrary curved element domains,”Numer. Math., No. 2, 109–129 (1973).

    MathSciNet  Google Scholar 

  105. C. W. Groetsch, “Spectral methods for linear inverse problems with unbounded operators,”Approx. Theory,70, No. 1, 16–28 (1992).

    MATH  MathSciNet  Google Scholar 

  106. A. Halme, “Polynomial operators for nonlinear systems analysis,”ACTA Polytech., Scandinav., No. 24 (1972).

  107. W. Hau\mann and K. Zeller, “Blending interpolation and bestL 1-approximation,”Arch. Math.,40, No. 6, 545–552 (1983).

    MathSciNet  Google Scholar 

  108. W. Haußmann and K. Getter, “Degree of best approximation by trigonometric blending functions,”Math. Zeitschriff,189, No. 1, 143–150 (1985).

    Google Scholar 

  109. Hoang Trung Du, “Blending interpolation on triangles,”Mathematica,18 (41), No. 1, 59–77 (1976).

    Google Scholar 

  110. R. Kadison, “Irreducible operator algebras,”Proc. Natl. Acad. Sci. USA,43, 273–276 (1957).

    MATH  MathSciNet  Google Scholar 

  111. V. V. Khlobystov and V. L. Makarov, “On the identification of nonlinear operators and its application,” in:Boundary Elements. IX, Vol. 1: Mathematical and Computational Aspects, Springer-Verlag, Berlin (1987), pp. 43–58.

    Google Scholar 

  112. V. V. Khlobystov and V. L. Makarov, “The Newton-type interpolational formula for nonlinear operators and its applications,” in:Conference of Numerical Methods and application, Sofia, August, 22–27 (1988), pp. 272–283.

  113. H. König, “Vector-valued Lagrange interpolation and mean convergence of Hermite series,”Function. Anal. Lect. Notes in Pure and Appl. Math. Ser., No. 9, 552 (1993).

    Google Scholar 

  114. J. Ph. Labrousse and M. Mbekhta, “Les operateurs points de continute pour la conorme et l'inverse de Moore-Penrose [Point-of-continuity operators for the conorm and the Moore-Penrose inverse],”Houston J. Math.,18, No. 1, 7–23 (1992).

    MathSciNet  Google Scholar 

  115. P. J. Maher, “Some norm inequalities concerning generalized inverses,”Linear Algebra Appl.,174, No. 1, 99–110 (1992).

    MATH  MathSciNet  Google Scholar 

  116. S. Mazur and W. Orlicz, “Grundlegende Eigenschaften der Polynomischen Operationen,”Lwow. Studia Math.,5, 50–68, 179–189 (1934).

    Google Scholar 

  117. J. R. Mika and R. A. B. Bond, “Method of approximate inverse for solving equations in Hilbert spaces,”Questiones Math.,15, No. 1, 53–71 (1992).

    MathSciNet  Google Scholar 

  118. G. M. Nielson, “Blending methods of minimum norm for triangular domains,”Revue Roum. Math. pures appliques,25, No. 6, 899–910 (1980).

    MATH  MathSciNet  Google Scholar 

  119. G. M. Nielson, “Minimum norm interpolation in triangles,”SIAM J. Numer. Anal.,17, No. 1, 44–62 (1980).

    MATH  MathSciNet  Google Scholar 

  120. G. M. Nielson, “A triangle interpolant with linear coefficients based on the fundamental bilinear interpolant of Mangeron,”Bul. Inst. Politech. din iasi. Sec. 1,26 (31), No. 3–4, 15–19 (1981).

    Google Scholar 

  121. G. M. Nielson and D. Mangeron, “Bilinear interpolation in triangles based upon a Mangeron theorem,”Rev. Real Acad. Cienc. Exact Fis Natur.,75, No. 1, 89–95 (1981).

    MathSciNet  Google Scholar 

  122. Nira Dyn, W. A. Light, and E. W. Cheney, “Interpolation by piecewise linear radial basis functions,”Approx. Theory,59, No. 2, 202–223 (1989).

    MathSciNet  Google Scholar 

  123. Pei Yuan Wu, “Approximation by invertible and noninvertible operators,”Approx. Theory,56, No. 3, 267–276 (1989).

    MathSciNet  Google Scholar 

  124. W. A. Porter, “Data interpolation, causality structure and system identification,”Inf. Contr.,29, 217–233 (1975).

    MATH  Google Scholar 

  125. W. A. Porter, “An overview of polynomic system theory,” in:IEEE Proc. Special Issue on System Theory, January (1976), pp. 18–23.

  126. W. A. Porter, “Synthesis of polynomic systems,”SIAM J. Math. Anal.,11, No. 2, 308–315 (1980).

    MATH  MathSciNet  Google Scholar 

  127. P. M. Prenter, “A Weierstrass theorem for real separable Hilbert spaces,”Approx. Theory, No. 3, 341–351 (1970).

    MATH  MathSciNet  Google Scholar 

  128. P. M. Prenter, “On polynomial operators and equations,” in:Nonlinear Functional Analysis and Applications, Academic Press, New York (1971).

    Google Scholar 

  129. P. M. Prenter, “Lagrange and Hermite interpolation in Banach spaces,”Approx. Theory,4, No. 4, 419–432 (1971).

    MATH  MathSciNet  Google Scholar 

  130. J. Prestin and M. Tasche, “Trigonometric interpolation for bivariant function of bounded variation,” in:Banach Center Publications. Vol. 22. Approximation and Function Spaces, Warzsawa (1989), pp. 309–321.

  131. H. B. Said, “C 1 interpolation on a polygon,”Appl. Math. Comput.,27, No. 3 (Pt. 1), 217–229 (1988).

    MATH  MathSciNet  Google Scholar 

  132. M. H. Stone, “The generalized Weierstrass approximation theorem,”Math. Magn.,21, 167–183 (1948).

    Google Scholar 

  133. A. P. Torokhtij, “Polynomial synthesis and numerical realization of nonlinear systems,”Math. Modeling Comp. Bulgar Acad. Sci., 64–74 (1992).

  134. Zhu Anmin and He Jeaxing, “A blending function interpolation on theN-dimensional simplex,”J. Tongji Univ.,16, No. 4, 537–542 (1988).

    Google Scholar 

Download references

Authors

Additional information

This paper is a continuation of the work published inObchyslyuval'na ta Prykladna Maternatyka, No. 78 (1994). The numeration of chapters, assertions, and formulas is continued.

Translated fromObchyslyuval'na ta Prykladna Matematyka, No. 79, 1995, pp 10–116.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makarov, V.L., Khlobystov, V.V. Polynomial interpolation of operators. J Math Sci 86, 2459–2521 (1997). https://doi.org/10.1007/BF02355309

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02355309

Keywords

Navigation