Advertisement

Journal of Mathematical Sciences

, Volume 85, Issue 2, pp 1827–1838 | Cite as

The Gelfand and Bernsteinn-widths of some classes of analytic functions

  • O. G. Parfenov
Article
  • 10 Downloads

Abstract

This paper contains generalizations of a well-known theorem of Ismagilov on Kolmogorovn-widths in a Hilbert space for Bernstein and Gelfandn-widths. Some examples are considered. Bibliography: 10 titles.

Keywords

Hilbert Space Analytic Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    V. M. Tikhomirov,Some Problems of Approximation Theory [in Russian] Moscow (1976).Google Scholar
  2. 2.
    O. G. Parfenov, “Then-widths of a set of analytic functions,”Mat. Sb.,117, 279–285 (1982).MATHMathSciNetGoogle Scholar
  3. 3.
    S. Fisher and C. Micchelli, “Then-widths of sets of analytic functions,”Duke Math. J.,47, 789–801 (1980).CrossRefMathSciNetGoogle Scholar
  4. 4.
    S. Fisher and M. Stessin, “Then-widths of the unit ball ofH q”, Preprint, Northwestern University, Evanston (1990).Google Scholar
  5. 5.
    O. G. Parfenov, “The Gelfandn-widths of the unit ball of the Hardy classH p in weight spaces,”Mat. Zametki,87, 108–112 (1985).MathSciNetGoogle Scholar
  6. 6.
    K. Yu. Osipenko and M. I. Stessin, “On then-widths of classH 2 inn-dimensional ball,”Usp. Mat. Nauk,45, 193–194 (1990).MathSciNetGoogle Scholar
  7. 7.
    R. S. Ismagilov, “On then-Widths of compacts in a Hilbert space,”Funkts. Analiz Prilozh.,2, 32–39 (1968).MATHMathSciNetGoogle Scholar
  8. 8.
    A. Pinkus,The n-widths in Approximation Theory, Springer-Verlag (1985).Google Scholar
  9. 9.
    S. V. Pukhov, “Inequalities for the Kolmogorov and Bernsteinn-widths in a Hilbert space,”Mat Zametki,25, 619–628 (1979).MATHMathSciNetGoogle Scholar
  10. 10.
    S. G. Krein, Yu. I. Petunin, and E. M. Semenov,Interpolation of Linear Operators [in Russian], Moscow (1978).Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • O. G. Parfenov

There are no affiliations available

Personalised recommendations