Advertisement

Mathematical Notes

, Volume 61, Issue 1, pp 58–75 | Cite as

Normal forms of quadratic bose operators

  • V. V. Kucherenko
  • V. P. Maslov
Article
  • 41 Downloads

Abstract

We construct a proper canonical transformation that reduces the quadratic Bose operator to a direct sum of finite-dimensional quadratic operators each of which can be reduced by a finite-dimensional canonical transformation to one of the standard forms corresponding to the standard forms of real quadratic Hamiltonians.

Key words

quadratic Bose operators Fock space, (u-vtransformations normal forms of Hamiltonians 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. A. Berezin,The Method of Second Quantization [in Russian], Nauka, Moscow (1965).Google Scholar
  2. 2.
    N. N. Bogolyubov, “To the theory of superfluidity,”Izv. Akad. Nauk SSSR Ser. Fiz.,11, No. 1, 77–90 (1947).MathSciNetGoogle Scholar
  3. 3.
    V. P. Maslov,The Complex WKB Method for Nonlinear Equations [in Russian], Nauka, Moscow (1977); English transl.: Birkhäuser, Basel-Boston-Berlin (1994).Google Scholar
  4. 4.
    V. P. Maslov and O. Yu. Shvedov, “Quantization in a neighborhood of classical solutions in theN-particle problem and superfluidity,”Teoret. Mat. Fiz. [Theoret. and Math. Phys.],98, No. 2, 266–288 (1994).MathSciNetGoogle Scholar
  5. 5.
    N. N. Bogolyubov and N. N. Bogolyubov, Jr.,An Introduction to Quantum Statistical Mechanics [in Russian], Nauka, Moscow (1984).Google Scholar
  6. 6.
    V. V. Kucherenko and V. P. Maslov, “The spectrum of a system ofN bosons, whereN→∞,”Dokl. Ross. Akad. Nauk [Russian Math. Dokl.],348, No. 2, 169–172 (1996).MathSciNetGoogle Scholar
  7. 7.
    P. Ring and P. Schuck,The Nuclear Many-Body Problem, Springer-Verlag, Berlin (1980).Google Scholar
  8. 8.
    M. V. Keldysh and V. B. Lidskii, “Topics in the spectral theory of nonself-adjoint operators,”Proceedings of the IVth All-Union Congress of Mathematicians,I, 101–120 (1963).Google Scholar
  9. 9.
    I. Ts. Gokhberg and M. G. Krein,An Introduction to the Theory of Linear Nonselfadjoint Operators [in Russian], Nauka, Moscow (1965).Google Scholar
  10. 10.
    J. Williamson, “On an algebraic problem concerning the normal forms of linear dynamical systems,”Amer. J. Math.,58, No. 1, 141–163 (1936).MATHMathSciNetGoogle Scholar
  11. 11.
    V. I. Arnold,Mathematical Methods of Classical Mechanics [in Russian], Nauka, Moscow (1989).Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • V. V. Kucherenko
    • 1
  • V. P. Maslov
    • 2
  1. 1.Moscow State Civil Engineering UniversityMoscowUSSR
  2. 2.M. V. Lomonosov Moscow State UniversityMoscowUSSR

Personalised recommendations