Skip to main content
Log in

Active transport of Ca2+ in bacteria: Bioenergetics and function

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

The bioenergetics of Ca2+ transport in bacteria are discussed with special emphasis on the interrelationship between transport and other cellular functions such as substrate oxidation by the respiratory chain and oxidative phosphorylation. The unusual polarity of Ca2+ movement provides an exceptional tool to compare active transport and other ATP requiring or generating processes since this ion is actively taken up by everted vesicles in which the coupling-factor ATPase is exposed to the external medium. As inferred from studies with everted vesicles, the active extrusion of Ca2+ by whole cells can be accomplished by substrate driven respiration, hydrolysis of ATP or as in the case ofStreptococcus faecalis by a nonhydrolytic unknown process which involves ATP directly. Substrate oxidation and the hydrolysis of ATP result in the generation of a pH gradient which can energize the Ca2+ uptake directly (Ca2+/H+ antiport) or via a secondary Na+ gradient (Ca2+/Na+ antiport). In contrast to exponentially growing cells sporulating Bacilli accumulate Ca2+ during the synthesis of dipicolinic acid. Studies involving Ca2+ transport provided evidence in support of the hypothesis that the Mg2+ ATPase fromEscherichia coli not only provides the driving force for various cellular functions but exerts a regulatory role by controlling the permeability of the membrane to protons. The different specificity requirements of various naphthoquinone analogs in the restoration of transport or oxidative phosphorylation, after the natural menaquinone has been destroyed by irradiation, has indicated that a protonmotive force is sufficient to drive active transport. However, in addition to the driving force (protonmotive force) necessary to establish oxidative phosphorylation, a specific spatial orientation of the respiratory components, such as the naphthoquinones, is essential for the utilization of the proton gradient or membrane potential or both. Finally evidence suggesting that intracellular Ca2+ levels might play a fundamental role in bacterial homeostasis is discussed, in particular the role of Ca2+ in the process of chemiotaxis and in conferring bacteria heat stability. A vitamin K-dependent carboxylation reaction has been found inEscherichia coli which is similar to that reported in mammalian systems which results in γ carboxylation of glutamate residues. Although all of the proteins containing γ-carboxyglutamate described so far are involved in Ca2+ metabolism, the role of these proteins inEscherichia coli is unknown and remains to be elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

FCCP:

carbonylcyanide p-trifluoromethoxyphenylhydrazone

DCCD:

N′N′ dicyclohexylcarbodiimide

CCCP:

carbonylcyanide m-chlorophenylhydrazone

PMS:

phenazine methosulfate

D-LDH:

D-lactate dehydrogenase

TPD, N,N,N′N′:

tetramethyl-p-phenylenediamine

pCMPS:

p-chloromercuriphenylsulfonate

HQNO:

2n-heptyl-4-hydroxyquinoline-N-oxide

EGTA:

ethyleneglycolbis(amino-ethyl-ether)-N,N′-tetraacetic acid

TCS:

tetrachlorosalicylanilide

pCMBS:

p-chloromercuribenzene sulfonic acid

pCMB:

p-chloromercuribenzoate, ΔμH+, protonmotive force

Δϕ:

membrane potential

ΔpH:

transmembrane proton gradient

References

  1. Silver, S., 1977, in Microorganisms and Minerals (Weinberg, E. D., ed.) pp. 49–103. Marcel Dekker, New York.

    Google Scholar 

  2. Silver, S., 1978, in Bacterial Transport (Rosen, B. P., ed.) pp. 221–324, Marcel Dekker, New York.

    Google Scholar 

  3. Crosby, W. H., Greene, R. A. and Slepecky, R. A., 1971, in Spore Research (Barker, A. M., Gould, G. W. and Wolf, J., eds.) pp. 143–160, Academic Press, New York.

    Google Scholar 

  4. Vinter, V., 1969, in The Bacterial Spore (Gould, G. W. and Hurst, A., eds.) pp. 73–123, Academic Press, New York.

    Google Scholar 

  5. Stahl, S. and Ljunger, C., 1976, FEBS Lett. 63, 184–187.

    CAS  PubMed  Google Scholar 

  6. Kobayashi, H., Van Brunt, J. and Harold, F. M., 1978, J. Biol. Chem. 253, 2085–2092.

    CAS  PubMed  Google Scholar 

  7. Tsuchiya, T. and Rosen, B. P., 1976, J. Biol. Chem. 251, 962–967.

    CAS  PubMed  Google Scholar 

  8. Bhattacharyya, P. and Barnes, E. M., 1976. J. Biol. Chem. 251, 5614–5619.

    CAS  Google Scholar 

  9. Barnes, E. M., Roberts, R. R. and Bhattacharyya, P., 1978. Membr. Biochem. 1, 73–88.

    CAS  PubMed  Google Scholar 

  10. Kumar, G., Devés, R. and Brodie, A. F. 1979, Eur. J. Biochem. 100, 365–375.

    Article  CAS  PubMed  Google Scholar 

  11. Belliveau J. W. and Lanyi, J. K. 1978, Arch. Biochem. Biophys. 186, 98–105.

    Article  CAS  PubMed  Google Scholar 

  12. Ordal, G. W. and Fields, R. B., 1977, J. Theor. Biol. 68, 491–500.

    CAS  PubMed  Google Scholar 

  13. Jackson, C. M., 1979, in Vitamin K Metabolism and Vitamin K-dependent Proteins (Suttie, J. W., ed.) pp. 16–29, University Park Press, Baltimore.

    Google Scholar 

  14. Van Buskirk, J. J., Low, M. and Kirsh, W. M., 1979, in Vitamin K Metabolism and Vitamin K-dependent Proteins (Suttie, J. W., ed.) pp. 274–278, University Park Press, Baltimore.

    Google Scholar 

  15. Brodie, A. F. and Gray, C. T., 1956. J. Biol. Chem. 219, 853–862.

    CAS  PubMed  Google Scholar 

  16. Lee, S. H., Sutherland, T. O., Devés, R. and Brodie, A. F., 1980, Proc. Natl. Acad. Sci. USA 77, 102–106.

    CAS  PubMed  Google Scholar 

  17. Hersey, D. F. and Ajl, S. J., 1951, J. Gen. Physiol. 34, 295–304.

    Article  CAS  PubMed  Google Scholar 

  18. Pinchot, G. B. and Racker, E., 1951, in Phosphorus Metabolism (McElroy, W. D. and Glass, B., eds.) Vol. 1, pp. 366–369, John Hopkins Univ. Press, Baltimore.

    Google Scholar 

  19. Pinchot, G. B., 1953. J. Biol. Chem. 205, 65–74.

    CAS  PubMed  Google Scholar 

  20. Brodie, A. F. and Gray, C. T., 1955, Biochim. Biophys. Acta 17, 146–147.

    Article  CAS  PubMed  Google Scholar 

  21. Pinchot, G. B., 1965. Persp. Biol. and Med. 8, 180–195.

    CAS  Google Scholar 

  22. Brodie, A. F., Lee, S. H. and Kalra, V. K., 1979, in Microbiology (Schlessinger, D., ed.) pp. 46–53, American Society for Microbiology, Washington, D.C.).

    Google Scholar 

  23. Lee, S. H., Kalra, V. K. and Brodie, A. F., 1979, J. Biol. Chem. 254, 6861–6864.

    CAS  PubMed  Google Scholar 

  24. Higashi, T., Bogin, E. and Brodie, A. F., 1969, J. Biol. Chem. 244, 500–502.

    CAS  PubMed  Google Scholar 

  25. Brodie, A. F., Weber, M. M. and Gray, C. T., 1957. Biochim. Biophys. Acta 25, 448–449.

    Article  CAS  PubMed  Google Scholar 

  26. Brey, R. N. and Rosen, B. P., 1979. J. Biol. Chem. 254, 1957–1963.

    CAS  PubMed  Google Scholar 

  27. Silver, S. and Kralovic, M. L., 1969. Biochem. Biophys. Res. Commun. 34, 640–645.

    CAS  PubMed  Google Scholar 

  28. Silver, S., Toth, K. and Scribner, H. (1975). J. Bacteriol. 122, 880–885.

    CAS  PubMed  Google Scholar 

  29. Bronner, F., Nash, W. C. and Golub, E. E., 1975, in Spores VI (Gerhardt, P., Costilow, R. N. and Sadoff, H. L., eds.) pp. 356–361, American Society for Microbiology, Washington, D.C.

    Google Scholar 

  30. Jasper, P. and Silver, S. 1978. J. Bacteriol. 133, 1323–1328.

    CAS  PubMed  Google Scholar 

  31. Rosen, B. P. and McClees, J. S. 1974. Proc. Natl. Acad. Sci. USA 71, 5042–5046.

    CAS  PubMed  Google Scholar 

  32. Tsuchiya, T. and Rosen, B. P., 1975. J. Biol. Chem. 250, 7687–7692.

    CAS  PubMed  Google Scholar 

  33. Reeves, J. P., 1973. Biochem. Biophys. Res. Commun. 45, 931–936.

    Google Scholar 

  34. Hertzberg, E. L. and Hinkle, P. C., 1974. Biochem. Biophys. Res. Commun. 58, 178–184.

    Article  CAS  PubMed  Google Scholar 

  35. West, I. C. and Mitchell, P., 1974. FEBS Lett. 40, 1.

    Article  CAS  PubMed  Google Scholar 

  36. Hasan, S. M. and Rosen, B. P., 1977. Biochim. Biophys. Acta 459, 225–240.

    CAS  PubMed  Google Scholar 

  37. Tsuchiya, T. and Takeda, K., 1979. J. Biochem. 85, 943–951.

    CAS  PubMed  Google Scholar 

  38. Lee, C. P., 1971. Biochemistry 10, 4375–4381.

    CAS  PubMed  Google Scholar 

  39. Schuldiner, S., Rottenberg, H. and Avron, M. 1972. Eur. J. Biochem. 25, 64–70.

    Article  CAS  PubMed  Google Scholar 

  40. Lee, S. H. and Brodie, A. F., 1978. Biochem. Biophys. Res. Commun. 85, 788–794.

    Article  CAS  PubMed  Google Scholar 

  41. Brey, R. N., Beck, J. C., and Rosen, B. P., 1978. Biochim. Biophys. Res. Commun. 83, 1588–1594.

    Article  CAS  Google Scholar 

  42. Adler, L. W. and Rosen, B. P., 1977. J. Bacteriol. 129, 959–966.

    CAS  PubMed  Google Scholar 

  43. Adler, L. W., Ichikawa, T., Hasan, S. M., Tsuchiya, T. and Rosen, B. P., 1977. J. Supramol. Struct. 7, 15–27.

    Article  CAS  PubMed  Google Scholar 

  44. Kaback, H. R., 1974. Science 186, 882–892.

    CAS  PubMed  Google Scholar 

  45. Futai, M., 1974. J. Membr. Biol. 15, 15–28.

    CAS  PubMed  Google Scholar 

  46. Wickner, W., 1976. J. Bacteriol. 127, 162–167.

    CAS  PubMed  Google Scholar 

  47. Hare, J. E., Olden, K. and Kennedy, E. P., 1974. Proc. Natl. Acad. Sci. USA 71, 4843–4846.

    CAS  PubMed  Google Scholar 

  48. Short, S. A., Kaback, H. R. and Kohn, L. D., 1975. J. Biol. Chem. 250, 4291–4296.

    CAS  PubMed  Google Scholar 

  49. Kashket, E. R. and Brodie, A. F., 1963. J. Biol. Chem. 238, 2564–2570.

    Google Scholar 

  50. Barnes, E. M., Jr. and Kaback, H. R., 1971. J. Biol. Chem. 246, 5518–5522.

    CAS  PubMed  Google Scholar 

  51. Tsuchiya, T. and Rosen, B. P., 1975. Biochem. Biophys. Res. Commun. 63, 832–838.

    Article  CAS  PubMed  Google Scholar 

  52. Hasan, S. M., Tsuchiya, T. and Rosen, B. P., 1978. J. Bacteriol 133, 108–113.

    CAS  PubMed  Google Scholar 

  53. Kumar, G., Kalra, V. K. and Brodie, A. F., 1979. Arch. Biochem. Biophys. 198, 22–30.

    Article  CAS  PubMed  Google Scholar 

  54. Brodie, A. F. and Gray, C. T., 1956. Biochim. Biophys. Acta 19, 384–386.

    Article  CAS  PubMed  Google Scholar 

  55. Brodie, A. F., 1959. J. Biol. Chem. 234, 398–404.

    CAS  PubMed  Google Scholar 

  56. Lee, S. H., Kalra, V. K., Ritz, C. J. and Brodie A. F., 1977. J. Biol. Chem. 252, 1084–1091.

    CAS  PubMed  Google Scholar 

  57. Ritz, C. J. and Brodie, A. F., 1977. Biochem. Biophys. Res. Commun. 75, 933–939.

    Article  CAS  PubMed  Google Scholar 

  58. Ritz-Gold, C. J., Gold, C. M. and Brodie, A. F., 1979, Biochim. Biophys. Acta 547, 1–17.

    CAS  PubMed  Google Scholar 

  59. Ritz-Gold, C. J. and Brodie, A. F., 1979. Biochim. Biophys. Acta 547, 18–26.

    CAS  PubMed  Google Scholar 

  60. Carreira, J., Muñoz, E., Andrew, J. M., and Nieto, M., 1976. Biochim. Biophys. Acta 436, 183–189.

    CAS  PubMed  Google Scholar 

  61. Bragg, P. D. and Hou, C., 1975. Arch. Biochem. Biophys. 176, 311–321.

    Google Scholar 

  62. Schnebli, H. P. and Abrams, A. J., 1970. J. Biol. Chem. 245, 1115–1121.

    CAS  PubMed  Google Scholar 

  63. Kumar, G., Kalra, V. K. and Brodie, A. F., 1979. J. Biol. Chem. 254, 1964–1971.

    CAS  PubMed  Google Scholar 

  64. Jacobus, W. E., Tiozzo, R., Lungle, G., Lehninger, A. L. and Carafoli, E., 1975. J. Biol. Chem. 250, 7863–7870.

    CAS  PubMed  Google Scholar 

  65. Vercesi, A., Reynafarje, B. and Lehninger, A. L., 1978. J. Biol. Chem. 253, 6379–6385.

    CAS  PubMed  Google Scholar 

  66. Barnes, E. M. and Bhattacharryya, P., 1977. J Supramol. Struct. 6, 333–344.

    Article  CAS  PubMed  Google Scholar 

  67. Lanyi, J. K., Renthal, R. and McDonald, R. E., 1976. Biochemistry 15, 1603–1610.

    CAS  PubMed  Google Scholar 

  68. Lanyi, J. K. and MacDonald, R. E., 1976. Biochemistry 15, 4608–4615.

    CAS  PubMed  Google Scholar 

  69. Eisenbach, M., Sprung, S., Garty, H., Johnstone, R., Rottenburg, H. and Caplan, S. R., 1977. Biochim. Biophys. Acta 173, 370–376.

    Google Scholar 

  70. Harold, F. M. and Spitz, E., 1975. J. Bacteriol 122, 266–277.

    CAS  PubMed  Google Scholar 

  71. Golub, E. E. and Bronner, F., 1974. J. Bacteriol. 119, 840–843.

    CAS  PubMed  Google Scholar 

  72. Tsuchiya, T. and Rosen, B. P., 1975. J. Biol. Chem. 250, 8409–8415.

    CAS  PubMed  Google Scholar 

  73. Suryanarayana, M. and Brodie, A. F., 1964. J. Biol. Chem. 239, 4292–4297.

    Google Scholar 

  74. Futai, M., Sternweis, P. C. and Heppel, L. A., 1974. Proc. Natl. Acad. Sci. USA 71, 2725–2729.

    CAS  PubMed  Google Scholar 

  75. Bragg, P. D., Davies, P. L. and Hou, C., 1973. Arch. Biochem. Biophys. 159, 664–670.

    Article  CAS  Google Scholar 

  76. Larsen, S. H., Adler, J., Gargus, J. J. and Hogg, R. W., 1974. Proc. Natl. Acad. Sci. USA 71, 1239–1243.

    CAS  PubMed  Google Scholar 

  77. Butlin, J. D., Cox, G. B. and Gibson, F., 1971. Biochem. J. 124, 75–81.

    CAS  PubMed  Google Scholar 

  78. Butlin, J. D., Cox, G. B. and Gibson, F., 1973. Biochem. Biophys. Acta 292, 366–375.

    CAS  PubMed  Google Scholar 

  79. Fillingame, R. H., 1975. J. Bacteriol. 124, 870–883.

    CAS  PubMed  Google Scholar 

  80. Brodie, A. F. and Ballantine, J., 1960. J. Biol. Chem. 235, 232–237.

    CAS  PubMed  Google Scholar 

  81. Brodie, A. F., Doris, B. R. and Fieser, L. F., 1958. J. Am. Chem. Soc. 80, 6454.

    Article  CAS  Google Scholar 

  82. Gale, P. H., Arison, B. H., Trenner, N. R., Page, A. C., Jr., Folkers, K. and Brodie, A. F., 1963. Biochemistry 2, 200–203.

    CAS  PubMed  Google Scholar 

  83. Hirata, H., Asano, A. and Brodie, A. F., 1971. Biochem. Biophys. Res. Commun. 44, 368–374.

    Article  CAS  PubMed  Google Scholar 

  84. Brodie, A. F. and Ballantine, J., 1960. J. Biol. Chem. 235, 226–231.

    CAS  PubMed  Google Scholar 

  85. Brodie, A. F. and Watanabe, T. 1966. in Vitamins and Hormones (Harris, R. S. ed.) Vol. 24, pp. 447–464, Academic Press, N. Y., London.

    Google Scholar 

  86. Asano, A. and Brodie, A. F., 1965. J. Biol. Chem. 240, 4002–4010.

    CAS  PubMed  Google Scholar 

  87. Brodie, A. F., 1965, in: Biochemistry of Quinones (Morton, R. A., ed.) pp. 355–404. Academic Press, London, N.Y.

    Google Scholar 

  88. Dunphy, P. J. and Brodie, A. F., 1971. in Methods in Enzymology (McCormick, D. B. and Wright, L. D.) Vol 18, pp. 407–460.

  89. Boyer, P. D., 1977. Ann. Rev. Biochem. 46, 957–966.

    CAS  Google Scholar 

  90. Williams, R. J. P., 1975. FEBS Lett. 53, 123–125.

    Article  CAS  PubMed  Google Scholar 

  91. Lee, S. H., Cohen, N. S., Jacobs, A. J. and Brodie, A. F., 1979. Biochemistry 18, 2232–2239.

    CAS  PubMed  Google Scholar 

  92. Eisenstadt, E. and Silver, S., 1972. in Spores V, (Halvorson, H. O., Hanson, R., and Campbell, L. L., eds.) pp. 180–186, American Society for Microbiology, Washington, D. C.

    Google Scholar 

  93. Hogarth, C. and Ellat, D. J., 1978. Biochem. J. 176, 197–203.

    CAS  PubMed  Google Scholar 

  94. Hogarth, C. and Ellar, D. J., 1979. Biochem. J. 178, 627–632.

    CAS  PubMed  Google Scholar 

  95. Ordal, G. W., 1977. Nature 270, 66–67.

    Article  CAS  PubMed  Google Scholar 

  96. Berg, H. C. and Brown, D. A. 1972. Nature 239, 500–504.

    Article  CAS  PubMed  Google Scholar 

  97. Macnab, R. M. and Koshland, D. E., Jr., 1972. Proc. Natl. Acad. Sci. USA 69, 2509–2512.

    CAS  PubMed  Google Scholar 

  98. Mato, J. M., 1979. FEBS Lett. 102, 241–243.

    Article  CAS  PubMed  Google Scholar 

  99. Springer, M. S., Kort, E. N., Larsen, S. H., Ordal, G. W., Reader, R. W. and Adler, J., 1975. Proc. Natl. Acad. Sci. USA 72, 4640–4644.

    CAS  PubMed  Google Scholar 

  100. Aswad, D. and Koshland, D. E. Jr., 1974. J. Bacteriol, 118, 640–645.

    CAS  PubMed  Google Scholar 

  101. Koshland, D. E. Jr., 1977. Science 196, 1055–1063.

    CAS  PubMed  Google Scholar 

  102. Ljunger, C. 1970. Physiol. Plant. 23, 351–364.

    CAS  Google Scholar 

  103. Stahl, S., 1978. Arch. Microbiol. 119, 17–24.

    CAS  PubMed  Google Scholar 

  104. Stahl, S., 1978. FEMS. Microbiol. Lett. 4, 77–81.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dr. A. F. Brodie deceased on January 24, 1981.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Devés, R., Brodie, A.F. Active transport of Ca2+ in bacteria: Bioenergetics and function. Mol Cell Biochem 36, 65–84 (1981). https://doi.org/10.1007/BF02354906

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02354906

Keywords

Navigation