Molecular and Cellular Biochemistry

, Volume 37, Issue 3, pp 185–189 | Cite as

Comparative measurement by radioimmunoassay of the brain microtubule-associated protein MAP2

  • Antonio Nieto
  • Jesús Avila
  • Manuel Martínez Valdivia


The presence of the microtubule-associated protein (MAP2) in the brain of several species has been investigated by SDS-gel electrophoresis and by radioimmunoassay. This assay had a sensitivity of approx. 10 ng and it was capable of measuring the protein either in purified microtubules or in crude brain extracts. As determined with this radioimmunoassay, MAP2 accounted for about 10% of the porcine brain microtubule protein and 1% of the protein from a brain extract. Taking porcine MAP2 as a reference, we have detected polypeptides with the same electrophoretic mobility in brain microtubules from cow, sheep, rat and chicken. Nevertheless, the MAP2 from these species showed a variable degree of immunoreactivity. Bovine MAP2 appeared closely related to the porcine protein whereas the rat antigen showed low cross-reaction and chicken MAP2 appeared immunologically unrelated to porcine MAP2. Our results suggest a higher variability of the MAP2 sequences as compared to that reported by other authors for the brain microtubule protein, tubulin.


Polypeptide Electrophoretic Mobility Protein MAP2 Variable Degree Comparative Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sloboda, R. D., Rudolph, S. A., Rosenbaum, J. L. & Greengard, P., 1975. Proc. Natl. Acad. Sci. U.S.A. 72: 177–181.PubMedGoogle Scholar
  2. 2.
    Murphy, D. B. & Borisy, G. G., 1975. Proc. Natl. Acad. Sci. U.S.A. 72: 2692–2700.Google Scholar
  3. 3.
    Kutznetsov, S. A., Rodonov, V. I., Gelfand, V. I. & Rosenblat, V. A., 1978. FEBS Letters 95: 339–342.Google Scholar
  4. 4.
    Herzog, W. & Weber, K., 1978. Eur. J. Biochem. 92: 1–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Wiche, G., Corces, V. G. & Avila, J., 1978. Nature 273: 403–405.CrossRefPubMedGoogle Scholar
  6. 6.
    Villasante, A., Corces, V. G., Manso, R. & Avila, J., 1981. Nucl. Acids Res. 9: 895–908.PubMedGoogle Scholar
  7. 7.
    Sherline, P., Lee, Y. C. & Jacobs, S., 1977. J. Cell Biol 72: 380–389.CrossRefPubMedGoogle Scholar
  8. 8.
    Hiller, G. & Weber, K., 1978. Cell 14: 795–804.CrossRefPubMedGoogle Scholar
  9. 9.
    Sheterline, P., 1980. FEBS Letters 111: 167–170.CrossRefGoogle Scholar
  10. 10.
    Connolly, J. A. & Kalnins, V. I., 1980. Exp. Cell Res. 127: 341–350.CrossRefPubMedGoogle Scholar
  11. 11.
    Cleveland, D. W., Spiegelman, B. M. & Kirschner, M. W., 1979. J. Biol. Chem. 254: 12670–12678.PubMedGoogle Scholar
  12. 12.
    Shelanski, M. L., Gaskin, F. & Cantor, C. R., 1973. Proc. Natl. Acad. Sci. U.S.A. 70: 765–768.PubMedGoogle Scholar
  13. 13.
    Manso-Martínez, R., Villasante, A. & Avila, J., 1980. Eur. J. Biochem. 105: 307–313.PubMedGoogle Scholar
  14. 14.
    Laemmli, U. K., 1970. Nature 227: 680–685.CrossRefPubMedGoogle Scholar
  15. 15.
    Sheterline, P., 1978. Exp. Cell Res. 115: 460–464.CrossRefPubMedGoogle Scholar
  16. 16.
    Weir, D. M., 1967. Handbook of Experimental Immunology (Weir, D. M. ed.) pp. 3–9, Davis, Philadelphia.Google Scholar
  17. 17.
    Renart, J., Reiser, J. & Stark, G. R., 1979. Proc. Natl. Acad. Sci. U.S.A. 76: 3116–3120.PubMedGoogle Scholar
  18. 18.
    Hayashida, T., 1972. Growth and Growth Hormone (Pecile, A. & Muller, E. E., eds) pp. 25. Excerpta Medica, Amsterdam.Google Scholar
  19. 19.
    Lazarides, E., 1980. Nature 283: 249–256.CrossRefPubMedGoogle Scholar

Copyright information

© Martinus Nijhoff/Dr W. Junk Publishers 1981

Authors and Affiliations

  • Antonio Nieto
    • 1
  • Jesús Avila
    • 1
  • Manuel Martínez Valdivia
    • 1
  1. 1.Centro de Biología Molecular (C.S.I.C.-U.A.M.)Universidad Autónoma de MadridMadridSpain

Personalised recommendations