Skip to main content
Log in

Magnetism and structure of metallic glasses

  • Amorphous Systems
  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Metallic glasses are a rather new class of materials. They offer exciting possibilities for finding new materials with combinations of properties unknown for crystalline alloys. Mössbauer spectroscopy, along with other nuclear methods, has been employed successfully in fundamental studies of their properties. Two aspects of these studies are the subject of this paper.

  1. (i)

    Structural investigations. The observation of nuclear quadrupole interactions in metallic glasses provides a unique possibility to obtain information about local atomic configurations and their symmetry. This structural aspect is complementary to the radial pair distributions derived from X-ray or neutron diffraction and it plays a decisive role in the discrimination between different structural models.

  2. (ii)

    Magnetism. In metallic glasses, the structural disorder at the atomic scale modifies the properties of magnetically ordered materials compared to their crystalline counterparts. For materials containing rare-earth ions, in particular, local atomic structures have a direct influence on the magnetic properties.

Examples for recent experimental studies of these phenomena are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Klement, R.H. Willens and P. Duwez, Nature 187(1960)869.

    Google Scholar 

  2. W. Buckel and R. Hilsch, Z. Phys. 138(1954)109.

    Google Scholar 

  3. Good introductions to metallic glasses, their preparation, structure, and properties are given in the articles contained in the two volumes,Glassy Metals I, II, ed. H.-J. Güntherodt and H. Beck, Springer, Berlin, 1981 and 1983, Topics in Applied Physics, Vols. 46 and 53).

    Google Scholar 

  4. H. Beck and H.-J. Güntherodt, in ref. [3],Glassy Metals I, II, ed. H.-J. Güntherodt and H. Beck, Springer, Berlin, 1981 Vol. I, p. 1.

    Google Scholar 

  5. P. Panissod, this volume.

  6. P. Heubes, D. Korn, G. Schatz and G. Zibold, Phys. Lett. 74A(1979)267; and in:Nuclear and Electron Resonance Spectroscopies Applied to Materials Science, ed. E. Kaufmann and G.K. Shenoy (Elsevier, North-Holland, New York, 1981) p. 385; L. Thomé, H. Bernas, P. Heubes, M. Deicher and E. Recknagel, Nucl. Instr. Meth. in Phys. Res. 199(1982)431.

    ADS  Google Scholar 

  7. A.K. Bhatnagar, this volume.

  8. U. Gonser, this volume.

  9. J.D. Bernal, Proc. Roy. Phys. Soc. A 280(1964)299.

    ADS  Google Scholar 

  10. J.L. Finney, Proc. Roy. Phys. Soc. A 319(1970)479; J.F. Sadoc, J. Dixmier and A. Guinier, J. Non-Cryst. Solids 12(1973)46; G.S. Cargill, III and S. Kirkpatrick, AIP Conf. Proc. 31(1976)339.

    ADS  Google Scholar 

  11. L. von Heimendahl, J. Phys. F 5(1975) L141; J.A. Barker, J.L. Finney and M.R. Hoare, Nature 257(1975)120.

    ADS  Google Scholar 

  12. P.H. Gaskell, Nature 276(1978)484; J. Phys. C12(1979)4337.

    Article  Google Scholar 

  13. R. Wang, Nature 278(1979)700.

    Article  Google Scholar 

  14. G.S. Cargill, III, in:Thin Film Phenomena-Interfaces and Interactions, ed. J.E. Baglin and J.M. Poate (The Electrochemical Society, Princeton, 1978) p. 221.

    Google Scholar 

  15. Y. Waseda, H. Okezaki and T. Masumoto, in:Proc. Int. Conf. on the Structure of Non-Crystalline Materials, Cambridge, 1976 (Taylor and Francis, London, 1977) p. 202; D.S. Boudreaux, Phys. Rev. B8(1978)4039.

    Google Scholar 

  16. J. Hafner, J. Phys. F 12(1982)L205.

    Article  ADS  Google Scholar 

  17. J.U. Madsen and R.M. Cotterill, in:Liquid and Amorphous Metals, ed. E. Lüscher and H. Coufal, (Sijthoff and Noordhoff, Amsterdam, 1981, NATO ASI Series E, Vol. 36) p. 645.

    Google Scholar 

  18. G. Czizek, J. Fink, F. Götz, H. Schmidt, J.M.D. Coey, J.-P. Rebouillat and A. Liénard, Phys. Rev. B 23(1981)2513; H.-J. Stöckmann, J. Magn. Reson. 41(1981)145; M.E. Lines, J. Non-Cryst. Solids 46(1981)1.

    ADS  Google Scholar 

  19. J.B. Bieri, J. Sanchez, A. Fert, D. Bertrand and A.R. Fert, J. Appl. Phys. 53(1982)2347; W. Felsch, S.G. Kushnir and K. Samwer, J. de Phys. 41(1980)C8-630.

    Article  ADS  Google Scholar 

  20. G. Czjzek. Hyp. Int. 14(1983)189.

    Article  Google Scholar 

  21. M. Tenhover, P. Boolchand and W.J. Bresser, Phys. Rev. B 27(1983)7533.

    ADS  Google Scholar 

  22. J. Chappert, L. Asch, M. Bogé, G.M. Kalvius and B. Boucher, J. Magn. Magn. Mater. 28(1982)124.

    Article  ADS  Google Scholar 

  23. M. Maurer, J.M. Friedt and G. Krill, J. Phys. F 13(1983)2389.

    ADS  Google Scholar 

  24. G. Czjzek, D. Weschenfelder, V. Oestreich, H. Schmidt, A. Vaures and M. Maurer, J. Non-Cryst. Solids 61/62(1984)433.

    Article  Google Scholar 

  25. G.M. Kalvius, this volume.

  26. J. Durand, in ref. [3],Glassy Metals I, II, ed. H.-J. Güntherodt and H. Beck (Springer, Berlin, 1981 Vol. II, p. 343.

    Google Scholar 

  27. M. Sostarich, S. Dey, P. Deppe, M. Rosenberg, G. Czizek, V. Oestreich, H. Schmidt and F. Luborsky, IEEE Trans. Magn. 17(1981)2612.

    Article  Google Scholar 

  28. K. Handrich, Phys. Stat. Sol. 32(1969)K55.

    Google Scholar 

  29. A. Madhukar, J. de Paris 35(1974)C4–295.

    Google Scholar 

  30. S.J. Poon and J. Durand, Phys. Rev. B 18(1978)6253.

    ADS  Google Scholar 

  31. M. Maurer and J.M. Friedt, J. Phys. F 13(1983)2175.

    ADS  Google Scholar 

  32. J.M. Friedt, M. Maurer, J.P. Sanchez and J. Durand, J. Phys. F 12(1982)821.

    Article  ADS  Google Scholar 

  33. L. Takács, Hungarian Academy of Sciences report KFKI-1983-22 (1983).

  34. J.M.D. Coey, J. Appl. Phys. 49(1978)1646.

    Article  ADS  Google Scholar 

  35. R. Harris, M. Plischke and M.J. Zuckermann, Phys. Rev. Lett. 31(1973)160.

    ADS  Google Scholar 

  36. K.W.H. Stevens, Proc. Roy. Phys. Soc. A 65(1952)209.

    ADS  MATH  Google Scholar 

  37. R.W. Cochrane, R. Harris and M.J. Zuckermann, Phys. Rep. 48(1978)1.

    Article  ADS  Google Scholar 

  38. A. Fert and I.A. Campbell, J. Phys. F 8(1978)L57.

    Article  ADS  Google Scholar 

  39. A review of earlier work was given by J. Chappert, J. de Phys. 40(1979)C2–107.

    Google Scholar 

  40. B. Boucher, A. Liénard, J.-P. Rebouillat and J. Schweizer, J. Phys. F 9(1979) 1421 and 1433.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Czjzek, G. Magnetism and structure of metallic glasses. Hyperfine Interact 25, 667–680 (1985). https://doi.org/10.1007/BF02354671

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02354671

Keywords

Navigation