Soil Mechanics and Foundation Engineering

, Volume 33, Issue 2, pp 53–60 | Cite as

Some processes defining the rheological behavior of frozen soils under load

  • S. B. Ukhov
  • A. N. Vlasov
  • V. P. Merzlyakov
  • V. L. Savatorova
  • A. V. Talonov
Soil mechanics
  • 45 Downloads

Abstract

In developing long-term-strength and deformability criteria for plastically frozen soils, it is expedient to account for the effect of basic physical processes that take place in them on the local level. The proposed mathematical model of a frozen soil makes it possible to predict its deformations under load, which are associated with the local ice-water phase transition in the vicinity of a mineral particle and with the release of accumulated moisture onto the free surface (it is proven that primary consolidation is also possible in frozen soils).

Keywords

Mathematical Model Phase Transition Free Surface Civil Engineer Physical Process 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. A. Tsytovich and M. I. Sumgin, Fundamentals of Frozen Soil Mechanics [in Russian], Akad. Nauk SSSR, Moscow (1937).Google Scholar
  2. 2.
    N. A. Tsytovich, Frozen Soil Mechanics [in Russian], Vysshaya Shkola, Moscow (1973).Google Scholar
  3. 3.
    P. A. Shumskii, Fundamentals of Structural Ice Science [in Russian], Akad. Nauk SSSR, Moscow (1955).Google Scholar
  4. 4.
    S. S. Vyalov, Rheological Properties and Bearing Capacity of Frozen Soils [in Russian], Akad. Nauk SSSR, Moscow (1959).Google Scholar
  5. 5.
    S. S. Vyalov, V. G. Gmoshinskii, S. É. Gorodetskii, V. G. Grigor'eva, Yu. K. Zaretskii, N. K. Pekarskaya, and E. P. Shusherina, Strength and Creep of Frozen Soils and Design of Ice-Soil Enclosures [in Russian], Akad. Nauk SSSR, Moscow (1962).Google Scholar
  6. 6.
    S. B. Ukhov, “Soils as naturally formed composites,” in: Construction in Russia: Scientific and Engineering Progress [in Russian], Inzh. Akad. Ross. Fed., Moscow (1993), pp. 130–139.Google Scholar
  7. 7.
    Fundamentals of Geocryology [in Russian], Akad. Nauk SSSR, Moscow (1959).Google Scholar
  8. 8.
    J. Eshelby, Continual Theory of Dislocations [Russian translation], Inostr. Lit., Moscow (1963).Google Scholar
  9. 9.
    R. Christensen, Introduction to Composite Mechanics [Russian translation], Mir, Moscow (1982).Google Scholar
  10. 10.
    M. A. Grinfel'd, Methods of Continuum Mechanics in the Theory of Phase Transformations [in Russian], Nauka, Moscow (1990).Google Scholar
  11. 11.
    A. M. Maiermanov, Stefan Problem [in Russian], Nauka, Novosibirsk (1986).Google Scholar
  12. 12.
    A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics [in Russian], GITTL, Moscow (1953).Google Scholar
  13. 13.
    B. M. Smirnov, “Fractal clasters,” Usp. Fiz. Nauk,149, No. 2, 177–219 (1986).Google Scholar
  14. 14.
    S. B. Ukhov, A. N. Vlasov, V. P. Merzlyakov, A. V. Talonov, and A. V. Brushkov, “Effect of local phase transitions and the seepage of moisture on the creep of plastically frozen soil,” in: Collection of Publications: Soil Mechanics and Foundation Engineering [in Russian], (1995), pp. 19–25.Google Scholar
  15. 15.
    V. I. Kvlividze, “Characteristic features of the freezing of bound water based on data derived from modern physical methods,” Theses of Papers Presented at the All-Union Conference on Permafrostology [in Russian], Mosk. Gos. Univ., Moscow (1970), p. 151.Google Scholar
  16. 16.
    M. A. Sadovskii and V. F. Pisarenko, “Similitude in geophysics,” Priroda, No. 1, 13–23 (1991).Google Scholar
  17. 17.
    S. E. Grecheshchev, L. V. Chistotinov, and Yu. L. Shur, Cryogenic Physicogeological Processes and Their Prediction [in Russian], Nedra, Moscow (1970).Google Scholar
  18. 18.
    A. V. Brushkov, A. N. Vlasov, V. P. Merzlyakov, and A. V. Talonov, “Effect of local phase transitions on the deformability of plastically frozen soils,” Geoékologiya, No. 5, 71–77 (1995).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • S. B. Ukhov
  • A. N. Vlasov
  • V. P. Merzlyakov
  • V. L. Savatorova
  • A. V. Talonov

There are no affiliations available

Personalised recommendations