Disposition of quinapril and quinaprilat in the isolated perfused rat kidney

Abstract

An isolated perfused rat kidney model was used to probe the renal disposition of quinapril and quinaprilat after separate administration of each drug species. Control studies were performed with drug-free perfusate (n=8) and perfusate containing quinapril (n=9) quinaprilat (n=7) at initial drug concentrations of 1000 ng/ml (including corresponding tracer levels of tritiated drug). Physiologic parameters were within the normal range of values for this technique and were stable for the duration of each experiment. Quinapril and quinaprilat concentrations were determined in perfusate, urine, and perfusate ultrafiltrate using a specific and sensitive reversed-phase HPLC procedure with radiochemical detection, coupled to liquid scintillation spectrometry. Perfusate protein binding was determined using an ultrafiltration method at 37°C. The total renal learance of quinapril (CLr) was calculated asDose/AUC (0-∞), and is represented by the sum of its urinary and metabolic clearances. The urinary clearances (CLe) of quinapril and quinaprilat were calculated as urinary excretion rate divided by midpoint perfusate concentration for each respective species. Of the total renal clearance for quinapril (CLr=4.49 ml/min), less than 0.1% was cleared as unchanged drug (CLe=0.004 ml/min); over 99% of the drug was cleared as quinaprilat formed in the kidney. The clearance ratio of quinapril [CR=CLr/(fu·GFR)] was 41.0, a value representing extensive tubular secretion into the renal cells. Following quinaprilat administration, the clearance ratio of metabolite [CR=CLe/(fu β GFR)] was 3.85, indicating a net secretion process for renal elimination.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    E. A. DeFelice and J. B. Kostis. New ACE inhibitors. In J. B. Kostis and E. A. DeFelice (eds.),Angiotensin Converting Enzyme Inhibitors, Alan R. Liss, New York, 1987, pp. 213–261.

    Google Scholar 

  2. 2.

    M. Burnier, B. Waeber, J. Nussberger, and H. R. Brunner. Comparative cardiovascular effects of drugs used for hypertension.Drugs 39(Suppl. 1): 32–38 (1990).

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    J. C. Garrison and M. J. Peach. Renin and angiotensin. In A. G. Gilman, T. W. Rall, A. S. Nies and P. Taylor (eds.),The Pharmacologic Basis of Therapeutics, 8th ed., Pergamon, New York, 1985, pp. 749–763.

    Google Scholar 

  4. 4.

    J. B. Kostis, J. J. Raia, Jr., E. A. DeFelice, J. A. Barone, and R. G. Deeter. Comparative clinical pharmacology of ACE inhibitors. In J. B. Kostis and E. A. DeFelice (eds.),Angiotensin Converting Enzyme Inhibitors, Alan R. Liss, New York, 1987, pp. 19–54.

    Google Scholar 

  5. 5.

    J. B. Kostis. Angiotensin-converting enzyme inhibitors: Emerging differences and new compounds.Am. J. Hypertens. 2:57–64 (1989).

    CAS  PubMed  Google Scholar 

  6. 6.

    J. J. Raia, Jr., J. A. Barone, W. G. Byerly, and C. R. Lacy. Angiotensin-converting enzyme inhibitors: A comparative review.Ann. Pharmacother. 24:506–525 (1990).

    CAS  Google Scholar 

  7. 7.

    W. A. Schlueter and D. C. Batlle. Renal effects of antihypertensive drugs.Drugs 37:900–925 (1989).

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    V. J. Dzau. Mechanism of action of angiotensin-converting enzyme (ACE) inhibitors in hypertension and heart failure.Drugs 39 (Suppl. 2): 11–16 (1990).

    PubMed  Article  Google Scholar 

  9. 9.

    P. A. Todd and R. C. Heel. Enalapril: A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in hypertension and congestive heart failure.Drugs 31:198–248 (1986).

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    A. N. Wadworth and R. N. Brogden. Quinapril: A review of its pharmacological properties, and therapeutic efficacy in cardiovascular disorders.Drugs 41: 378–399 (1991).

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    H. R. Kaplan, D. G. Taylor, S. C. Olson, and L. K. Andrews. Quinapril: A preclinical review of the pharmacology, pharmacokinetics, and toxicology.Angiology 40:335–350 (1989).

    CAS  PubMed  Google Scholar 

  12. 12.

    D. J. Tocco, F. A. de Luna, A. E. W. Duncan, T. C. Vassil, and E. H. Ulm. The physiological disposition and metabolism of enalapril maleate in laboratory animals.Drug Metab. Dispos. 10:15–19 (1982).

    CAS  PubMed  Google Scholar 

  13. 13.

    T. Unger, B. Schüll, W. Rascher, R. E. Lang, and D. Ganten. Selective activation of the converting enzyme inhibitor MK 421 and comparison of its active diacid form with captopril in different tissues of the rat.Biochem. Pharmacol. 31:3063–3070 (1982).

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    M. L. Cohen, K. D. Kurz, and K. W. Schenck. Tissue angiotensin converting enzyme inhibition as an index of the disposition of enalapril (MK-421) and metabolite MK-422.J. Pharmacol. Exp. Ther. 226:192–196 (1983).

    CAS  PubMed  Google Scholar 

  15. 15.

    I. A. M. de Lannoy, R. Nespeca, and K. S. Pang. Renal handling of enalapril and enalaprilat: Studies in the isolated red blood cell-perfused rat kidney.J. Pharmacol. Exp. Ther. 251:1211–1222 (1989).

    PubMed  Google Scholar 

  16. 16.

    I. A. M. de Lannoy and K. S. Pang. Combined recirculation of the rat liver and kidney: Studies with enalapril and enalaprilat.J. Pharmacokin. Biopharm. 21:423–456 (1993).

    Article  Google Scholar 

  17. 17.

    D. E. Smith and A. R. Kugler. Influence of intrarenal metabolism of the analysis of renal drug transport mechanisms.J. Pharm. Sci. 83:1519–1520 (1994).

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    F. H. Epstein, J. T. Brosnan, J. D. Tange, and B. D. Ross. Improved function with amino acids in the isolated perfused kidney.Am. J. Physiol. 243:F284-F292 (1982).

    CAS  PubMed  Google Scholar 

  19. 19.

    H. A. Krebs and K. Henseleit. Untersunchungen über die harnstoffbildung im tierkorper.Z. Physiol. Chem. 210:33–36 (1932).

    CAS  Article  Google Scholar 

  20. 20.

    J. M. Nishiitsutsuji-Uwo, B. D. Ross, and H. A. Krebs. Metabolic activities of the isolated perfused rat kidney.Biochem. J. 103:852–862 (1967).

    CAS  PubMed Central  PubMed  Google Scholar 

  21. 21.

    R. H. Bowman. The perfused rat kidney.Meth. Enzymol. 39:3–11 (1975).

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    A. R. Kugler, S. C. Olson, and D. E. Smith. Determination of quinapril and quinaprilat by high-performance liquid chromatography with radiochemical detection, coupled to liquid scintillation spectrometry.J. Chromatog. B 666:360–367 (1995).

    CAS  Article  Google Scholar 

  23. 23.

    B. D. Ross. The isolated perfused rat kidney.Clin. Sci. Mol. Med. 55:513–521 (1978).

    CAS  Google Scholar 

  24. 24.

    T. Maack. Physiological evaluation of the isolated perfused rat kidney.Am. J. Physiol. 238:F71-F78 (1980).

    CAS  PubMed  Google Scholar 

  25. 25.

    I. Bekersky. Use of the isolated perfused kidney as a tool in drug disposition studies.Drug Metab. Rev. 14:931–960 (1983).

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    C.A. Rodríguez and D. E. Smith. Influence of the unbound concentration of cefonicid on its renal elimination in isolated perfused rat kidneys.Antimicrob. Agents Chemother.35:2395–2400 (1991).

    PubMed Central  PubMed  Article  Google Scholar 

  27. 27.

    C. A. Rodríguez and D. E. Smith. Influence of angiotensin II-induced alterations in renal flow on excretion of cefonicid in isolated perfused rat kidneys.Antimicrob. Agents Chemother. 36:616–619 (1992).

    PubMed Central  PubMed  Article  Google Scholar 

  28. 28.

    D. E. Smith, S. Guillard, and C. A. Rodríguez. Effect of angiotensin II-induced changes in perfusion flow rate on chlorothiazide transport in the isolated perfused rat kidney.J. Pharmacokin. Biopharm. 20:195–207 (1992).

    CAS  Article  Google Scholar 

  29. 29.

    A. R. Kugler, S. C. Olson, and D. E. Smith. Effect of competitive transport inhibitors on quinapril and quinaprilat disposition in the isolated perfused rat kidney.Pharm. Res. 10(Suppl.):S415 (1993).

    Google Scholar 

  30. 30.

    M. Acara, F. Roch-Ramel, and B. Rennick. Bidirectional renal tubular transport of free choline: A micropuncture study.Am. J. Physiol. 236:F112-F118 (1979).

    CAS  PubMed  Google Scholar 

  31. 31.

    A. R. Kugler, S. C. Olson, and R. A. Jordan. In vitro quinapril metabolism in rat, dog, monkey, and human liver preparations.Pharm. Res. 8(Suppl.):S239 (1991).

    Google Scholar 

  32. 32.

    S. C. Olson, A. M. Horvath, B. M. Michniewicz, A. J. Sedman, W. A. Colburn, and P. G. Welling. The clinical pharmacokinetics of quinapril.Angiology 40:351–359 (1989).

    CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to David E. Smith.

Additional information

This work was supported in part by a gift from Parke-Davis Pharmaceutical Research, Division of Warner-Lambert Company and by Grant R01 GM35498 from the National Institutes of Health.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kugler, A.R., Olson, S.C. & Smith, D.E. Disposition of quinapril and quinaprilat in the isolated perfused rat kidney. Journal of Pharmacokinetics and Biopharmaceutics 23, 287–305 (1995). https://doi.org/10.1007/BF02354286

Download citation

Key words

  • quinapril
  • quinaprilat
  • isolated perfused rat kidney
  • renal disposition
  • clearance