Physiologically based pharmacokinetic modeling as a tool for drug development

  • Steven B. Charnick
  • Ryosei Kawai
  • Jerry R. Nedelman
  • Michel Lemaire
  • Werner Niederberger
  • Hitoshi Sato
Perspectives in Pharmacokinetics


Since the pioneering work of Haggard and Teorell in the first half of the 20th century, and of Bischoff and Dedrick in the late 1960s, physiologically based pharmacokinetic (PBPK) modeling has gone through cycles of general acceptance, and of healthy skepticism. Recently, however, the trend in the pharmaceuticals industry has been away from PBPK models. This is understandable when one considers the time and effort necessary to develop, test, and implement a typical PBPK model, and the fact that in the present-day environment for drug development, efficacy and safety must be demonstrated and drugs brought to market more rapidly. Although there are many modeling tools available to the pharmacokineticist today, many of which are preferable to PBPK modeling in most circumstances, there are several situations in which PBPK modeling provides distinct benefits that outweigh the drawbacks of increased time and effort for implementation. In this Commentary, we draw on our experience with this modeling technique in an industry setting to provide guidelines on when PBPK modeling techniques could be applied in an industrial setting to satisfy the needs of regulatory customers. We hope these guidelines will assist researchers in deciding when to apply PBPK modeling techniques. It is our contention that PBPK modeling should be viewed as one of many modeling tools for drug development.

Key Words

physiologically based pharmacokinetics modeling drug development 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. S. Hussain, R. D. Johnson, N. N. Vachharajani, and W. A. Ritschel. Feasibility of developing a neural network for prediction of human pharmacokinetic parameters from animal data.Pharm. Res. 10:466–469 (1993).PubMedCrossRefGoogle Scholar
  2. 2.
    P. Veng-Pedersen and N. B. Modi. Neural networks in pharmacodynamic modeling. Is current modeling practice of complex kinetic systems at a dead end?J. Pharmacokin. Biopharm. 20:397–412 (1992).CrossRefGoogle Scholar
  3. 3.
    A. S. Hussain, X. Yu, and R. D. Johnson. Application of neural computing in pharmaceutical product development.Pharm. Res. 8:1248–1252 (1991).PubMedCrossRefGoogle Scholar
  4. 4.
    R. S. Markin, W. J. Murray, and H. Boxenbaum. Quantitative structure-activity study on human pharmacokinetic parameters of benzodiazepines using the graph theoretical approach.Pharm. Res. 5:201–208 (1988).PubMedCrossRefGoogle Scholar
  5. 5.
    E. Gifford, M. Johnson, and C.-C. Tsai. A graph-theoretic approach to modeling metabolic pathways.J. Comp. Aid. Mol. Dis. 5:(1991).Google Scholar
  6. 6.
    P. O. Droz, M. M. Wu, W. G. Cumberland, and M. Berode. Variability in biological monitoring of solvent exposure. I. Development of a population physiological model.Br. J. Ind. Med. 46:447–460 (1989).PubMedCentralPubMedGoogle Scholar
  7. 7.
    T. M. Ludden, S. R. B. Allerheiligen, and R. F. Burk. Application of population analysis to physiological pharmacokinetics.J. Pharmacokin. Biopharm. 19:101S-113S (1991).CrossRefGoogle Scholar
  8. 8.
    D. R. Mattison and F. R. Jelovsek. Pharmacokinetics and expert systems as aids for risk assessment in reproductive toxicology.Environ. Health Perspect. 76:107–119 (1987).PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    L. P. Balant, H. Roseboom, and U. M. Gundert-Remy. Pharmacokinetic criteria for drug research and development. In B. Testa (ed.),Advances in Drug Research, Academic Press, London, 1990, pp. 1–137.Google Scholar
  10. 10.
    R. M. J. Ings. Interspecies scaling and comparisons in drug development and toxicokinetics.Xenobiotica 20:1201–1231 (1990).PubMedCrossRefGoogle Scholar
  11. 11.
    W. R. Chappel and J. Mordenti. Extrapolation of toxicological and pharmacological data from animals to humans. In B. Testa (ed.),Advances in Drug Research, Academic Press, New York, 1991, pp. 1–116.Google Scholar
  12. 12.
    W. A. Colburn. Physiologic pharmacokinetic modeling.J. Clin. Pharmacol. 28:673–677 (1988).PubMedCrossRefGoogle Scholar
  13. 13.
    W. A. Ritschel and P. S. Banaerjee. Physiological pharmacokinetic models: Principles, applications, limitations, and outlook.Meth. Find. Exp. Clin. Pharmacol. 8:603–614 (1986).Google Scholar
  14. 14.
    L. E. Gerlowski and R. K. Jain. Physiologically based pharmacokinetic modeling: Principles and applications.J. Pharm. Sci. 72:1103–1127 (1983).PubMedCrossRefGoogle Scholar
  15. 15.
    R. W. D'Souza and H. Boxenbaum. Physiological pharmacokinetic models: Some aspects of theory, practice, and potential.Toxicol. Ind. Health. 4:151–171 (1988).PubMedGoogle Scholar
  16. 16.
    K. B. Bischoff. Physiological pharmacokinetics.Bull. Math. Biol. 48:309–322 (1986).PubMedCrossRefGoogle Scholar
  17. 17.
    M. Rowland. Physiological pharmacokinetic models and interanimal species scaling.Pharmacol. Ther. 29:49–68 (1985).PubMedCrossRefGoogle Scholar
  18. 18.
    M. Rowland. Physiologic pharmacokinetic models: Relevance, experience, and future trends.Drug Metab. Rev. 15:55–74 (1984).PubMedCrossRefGoogle Scholar
  19. 19.
    A. J. J. Atkinson, T. I. Ruo, and M. C. Frederiksen. Physiological basis of multicompartmental models of drug distribution.Trends Pharmacol. Sci. 12:96–101 (1991).PubMedCrossRefGoogle Scholar
  20. 20.
    K. J. Himmelstein and R. J. Lutz. A review of the applications of physiologically based pharmacokinetic modeling.J. Pharmacokin. Biopharm. 7:127–145 (1979).CrossRefGoogle Scholar
  21. 21.
    R. Kawai, M. Lemaire, J.-L. Steimer, A. Bruelisauer, W. Niederberger, and M. Rowland. Physiologically based pharmacokinetic study on a cyclosporine derivative, SDZ IMM 125.J. Pharmacokin. Biopharm. 22:327–365 (1994).CrossRefGoogle Scholar
  22. 22.
    H. Sato, A Bruelisauer, M. Lemaire, and W. Niederberger. Physiological modeling of nonlinear hepatic first-pass of a novel 5-HT3 antagonist, SDZ ICM 567, in rats and dogs, and extrapolation to human. (in preparation).Google Scholar
  23. 23.
    M. Gilbaldi and D. Perrier.Pharmacokinetics, Marcel Dekker, New York, 1982.Google Scholar
  24. 24.
    H. W. Haggard. The absorption, distribution, and elimination of ethyl ether. II. Analysis of the mechanism of the absorption and elimination of such a gas or vapor as ethyl ether.J. Biol. Chem. 59:753–770 (1924).Google Scholar
  25. 25.
    T. Teorell. Kinetics of the distribution of substances administered to the body.Arch. Int. Pharmacodyn. Ther. 57:205–240 (1937).Google Scholar
  26. 26.
    W. W. Mapleson. An electric analogue for uptake and exchange of inert gases and other agents.J. Appl. Physiol. 18:197–204 (1963).PubMedGoogle Scholar
  27. 27.
    R. Bellman, R. Kalaba, and J. A. Jacquez. Some mathematical aspects of chemotherapy.Bull. Math. Biophysics. 22:181–190 (1960).CrossRefGoogle Scholar
  28. 28.
    K. B. Bischoff, R. L. Dedrick, D. S. Zaharko, and J. A. Longstreth. Methotrexate pharmacokinetics.J. Pharm. Sci. 60:1128–1133 (1971).PubMedCrossRefGoogle Scholar
  29. 29.
    K. B. Bischoff, R. L. Dedrick, and D. S. Zaharko. Preliminary model for methotrexate pharmacokinetics.J. Pharm. Sci. 59:149–154 (1970).PubMedCrossRefGoogle Scholar
  30. 30.
    K. B. Bischoff and R. L. Dedrick. Thiopental pharmacokinetics.J. Pharm. Sci. 57:1346–1351 (1968).PubMedCrossRefGoogle Scholar
  31. 31.
    H. Boxenbaum and R. W. D'Souza. Interspecies pharmacokinetic scaling, biological design, and neoteny. In B. Testa (ed.),Advances in Drug Research, Academic Press, London, 1990, pp. 139–196.Google Scholar
  32. 32.
    J. Mordenti. Man versus beast: Pharmacokinetic scaling in mammals.J. Pharm. Sci. 75:1028–1046 (1986).PubMedCrossRefGoogle Scholar
  33. 33.
    L. P. Balant and M. Cex-Fabry. Physiological pharmacokinetic modeling.Xenobiotica 20:1241–1257 (1990).PubMedCrossRefGoogle Scholar
  34. 34.
    E. Voisin, M. Ruthsatz, J. M. Collins, and P. C. Hoyle. Extrapolation of animal toxicity to humans: Interspecies comparisons in drug development.Reg. Toxicol. Pharmacol. 12:107–116 (1990).CrossRefGoogle Scholar
  35. 35.
    M. E. Andersen, D. Krewski, and J. R. Withey. Physiological pharmacokinetics and cancer risk assessment.Cancer Letters 69:1–14 (1993).PubMedCrossRefGoogle Scholar
  36. 36.
    R. B. Conolly and M. E. Andersen. Biologically based pharmacodynamic models: Tools for toxicological research and risk assessment.Ann. Rev. Pharmacol. Toxicol. 31:503–523 (1991).CrossRefGoogle Scholar
  37. 37.
    H.-W. Leung. Use of physiologically based pharmacokinetic models to establish biological exposure indexes.Am. Ind. Hyg. Assoc. J. 53:369–374 (1992).PubMedCrossRefGoogle Scholar
  38. 38.
    H.-W. Leung. Development and utilization of physiologically based pharmacokinetic models for toxicological applications.J. Toxicol. Environ. Health 32:247–267 (1991).PubMedCrossRefGoogle Scholar
  39. 39.
    K. Krishnan and M. E. Andersen. Physiological modeling and cancer risk assessment.New Trends Pharmacokin. (1991).Google Scholar
  40. 40.
    D. Krewski, J. R. Whithey, L. F. Ku, and C. C. Travis. Physiologically based pharmacokinetic models: Applications in carcinogenic risk assessment.New Trends Pharmacokin. (1991).Google Scholar
  41. 41.
    J. N. Blancato. Physiologically-based pharmacokinetic models in risk and exposure assessment.Ann. Ist. Super. Sanita. 27:601–608 (1991).PubMedGoogle Scholar
  42. 42.
    R. J. Lutz and R. L. Dedrick. Implications of pharmacokinetic modeling in risk assessment analysis.Environ. Health Perspect. 76:97–106 (1987).PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    A. Boddy, L. Aarons, and K. Petrak. Efficiency of drug targeting: Steady-state considerations using a three-compartment model.Pharm. Res. 6:367–372 (1989).PubMedCrossRefGoogle Scholar
  44. 44.
    C. A. Hunt, R. D. MacGregor, and R. A. Siegel. Engineering targetingin vivo drug delivery. I. The physiological and physicochemical principles governing opportunities and limitations.Pharm. Res. 3:333–344 (1986).PubMedCrossRefGoogle Scholar
  45. 45.
    J. M. Gallo, C. T. Hung, P. K. Gupta, and D. G. Perrier. Physiological pharmacokinetic model of adriamycin delivery via magnetic albumin microspheres in the rat.J. Pharmacokin. Biopharm. 17:305–326 (1989).CrossRefGoogle Scholar
  46. 46.
    F. G. King and R. L. Dedrick. Physiological pharmacokinetic modeling of cis-dichlorodiamineplatinum(II) (DDP) in the mouse.J. Pharmacokin. Biopharm. 20:95–99 (1992).CrossRefGoogle Scholar
  47. 47.
    F. G. King and R. L. Dedrick. Physiologic pharmacokinetic modeling of cis-dichlorodiamineplatinum(II) (DDP) in several species.J. Pharmacokin. Biopharm. 14:131–157 (1986).CrossRefGoogle Scholar
  48. 48.
    S. M. Eaton, P. Wedeking, M. F. Tweedle, and W. C. Eckelman. A multi-organ, axially distributed model of capillary permeability for a magnetic resonance imaging contrast agent.J. Pharm. Sci. 82:531–536 (1993).PubMedCrossRefGoogle Scholar
  49. 49.
    D. W. A. Bourne, J. J. Jacobs, A. Awaluddin, D. J. Maddalena, J. G. Wilson, and R. E. Boyd. Physiological modeling of disposition of potential tumor-imaging radiopharmaceuticals in tumor-bearing mice.J. Pharm. Sci. 81:408–412 (1992).PubMedCrossRefGoogle Scholar
  50. 50.
    D. C. Maneval, D. Z. D'Argenio, and W. Wolf. A kinetic model for 99mTc-DMSA in the rat.Eur. J. Nucl. Med. 16:29–34 (1990).PubMedCrossRefGoogle Scholar
  51. 51.
    Y. Sugiyama, D. C. Kim, H. Sato, S. Yanai, H. Satoh, T. Iga, and M. Hanano. Receptor-mediated disposition of polypeptides: Kinetic analysis of the transport of epidermal growth factor as a model peptide usingin vitro isolated perfused organs andin vivo systems.J. Control. Rel. 13:157–174 (1990).CrossRefGoogle Scholar
  52. 52.
    H. Sato, Y. Sugiyama, Y. Sawada, T. Iga, and M. Hanano. Physiologically based pharmacokinetics of radioiodinated human-β-endorphin in rats. An application of the capillary membrane-limited model.Drug. Metab. Dispos. 15:540–550 (1987).PubMedGoogle Scholar
  53. 53.
    D. G. Covell, J. Barbet, O. D. Holton, C. D. V. Black, R. J. Parker, and J. N. Winstein. Pharmacokinetics of monoclonal immunoglobulin G1, F(ab′)2, and Fab′ in mice.Cancer Res. 46:3969–3978 (1986).PubMedGoogle Scholar
  54. 54.
    S. M. Somani, S. K. Gupta, A. Khalique, and L. K. Unni. Physiological pharmacokinetic and pharmacodynamic model of physostigmine in the rat.Drug Metab. Disp. 19:655–660 (1991).Google Scholar
  55. 55.
    J. M. Gearhart, G. W. Jepson, H. J. Clewell, M. E. Andersen, and R. B. Conolly. Physiologically based pharmacokinetic and pharmacodynamic model for the inhibition of acetylcholinesterase by diisopropylfluorophosphate.Toxicol. Appl. Pharmacol. 106:295–310 (1990).PubMedCrossRefGoogle Scholar
  56. 56.
    P. C. Hiestanel, M. Graeber, V. Hurtenbach, P. Herrmann, S. Caunisuli, B. P. Richardson, M. K. Ebecle, and S. F. Birel. The new cyclosporine derivative, SDZ IMM 125;in vitro andin vivo pharmacologic effects.Transplant Proc. 24:31–38 (1992).Google Scholar
  57. 57.
    R. Kawai and M. Lemaire. Role of blood cell uptake on cyclosporine pharmacokinetics. In Proc. Int'l. Symp. on Blood Binding and Drug Transfer, J. P. Tillement and H. Eckert (eds.), Fort et Clair. Paris, 1993, pp. 89–108.Google Scholar
  58. 58.
    F. Y. Bois, L. Zeise, and T. N. Tozer. Precision and sensitivity of pharmacokinetic models for cancer risk assessment: Tetrachloroethylene in mice, rats, and humans.Toxicol. Appl. Pharmacol. 102:300–315 (1990).PubMedCrossRefGoogle Scholar
  59. 59.
    D. M. Hetrick, A. M. Jarabek, and C. C. Travis. Sensitivity analysis for physiologically based pharmacokinetic models.J. Pharmacokin. Biopharm. 19:1–20 (1991).Google Scholar
  60. 60.
    Advanced Continuous Simulation Language (ACSL), Mitchell and Gauthier Associates, Concord, MA, 1987.Google Scholar
  61. 61.
    E. C. Steiner, P. S. McCroskey, and T. D. Rev.SimuSolv: Modeling and Simulation Software, Reference Guide, Dow Chemical, Midland, MI, 1990.Google Scholar
  62. 62.
    L. J. Notarianni. Plasma protein binding of drugs in pregnancy and in neonates.Clin. Pharmacokin. 18:20–36 (1990).CrossRefGoogle Scholar
  63. 63.
    S. M. Wallace and R. K. Verbeeck. Plasma protein binding of drugs in the elderly.Clin. Pharmacokin. 12:41–72 (1987).CrossRefGoogle Scholar
  64. 64.
    D. Alvarez, R. Mastai, A. Lennie, G. Soifer, D. Levi, and R. Terg. Noninvasive measurement of portal venous blood flow in patients with cirrhosis: Effect of physiological and pharmacological response.Digest. Dis. Sci. 36:82–86 (1991).PubMedCrossRefGoogle Scholar
  65. 65.
    B. C. Chen, S.-C. Huang, G. Germano, W. Kuhle, R. A. Hawkins, D. Buxton, R. C. Brunken, H. R. Schelbert, and M. E. Phelps. Noninvasive quantification of hepatic arterial blood flow with nitrogen-13-ammonia and dynamic positron emission tomography.J. Nucl. Med. 32:2219–2228 (1991).Google Scholar
  66. 66.
    J. R. Horn, B. Zierler, L. A. Bauer, W. Reiss, and J. E. Strandness. Estimation of hepatic blood flow in branches of hepatic vessels utilizing a noninvasive, duplex doppler method.J. Clin. Pharmacol. 30:922–929 (1990).PubMedCrossRefGoogle Scholar
  67. 67.
    F. Weber, M. Anlauf, and M. Serdarevic. Noninvasive, quantitative determination of muscle blood flow in man by a combination of venous-occlusion plethsmography and computed tomography.Basic Res. Cardiol. 83:327–341 (1988).PubMedCrossRefGoogle Scholar
  68. 68.
    A. L. Hinderliter, M. A. Fitzpatrick, N. Schork, and S. Julius. Research utility of noninvasive methods for measurement of cardiac output.Clin. Pharmacol. Ther. 42:419–425 (1987).CrossRefGoogle Scholar
  69. 69.
    W. Weber, M. Looby, and J. Brockmoeller. Evaluation of hepatic function using the pharmacokinetics of a therapeutically administered drug. Application to the immunosuppresant cyclosporin.Clin. Pharmacokin. 23:69–83 (1992).CrossRefGoogle Scholar
  70. 70.
    W. R. Crom, S. L. Webster, L. Bobo, M. E. Teresi, M. V. Relling, and W. E. Evans. Simultaneous administration of multiple model substrates to assess hepatic drug clearance.Clin. Pharmacol. Ther. 41:645–650 (1987).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Steven B. Charnick
    • 1
  • Ryosei Kawai
    • 2
  • Jerry R. Nedelman
    • 1
  • Michel Lemaire
    • 3
  • Werner Niederberger
    • 3
  • Hitoshi Sato
    • 3
  1. 1.Department of Clinical Pharmacology, Drug Safety, Sandoz Research InstituteSandoz Pharmaceuticals CorporationEast Hanover
  2. 2.Tsukuba Research InstituteSandoz Pharmaceuticals Ltd.IbarakiJapan
  3. 3.Drug SafetySandoz Pharmaceuticals Ltd.BaselSwitzerland

Personalised recommendations