Soil Mechanics and Foundation Engineering

, Volume 33, Issue 5, pp 180–184 | Cite as

Construction ecology and geotechnics

  • B. I. Kulachkin
  • V. A. Il'ichev
  • Yu. G. Trofimenkov
  • A. I. Radkevich
Ecology and Foundation Engineering
  • 67 Downloads

Abstract

A new scientific trend in general ecology — construction ecology — is defined, the concept of the structure of construction ecology is discussed in light of ecological problems of geomechanics, the modern state of geomechanics problems is analyzed, and specific examples and recommendations are cited.

Keywords

Civil Engineer Structural Foundation Hydraulic Engineer Geomechanics Ecological Problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. I. Kulachkin, Yu. G. Trofimenkov, and A. I. Radkevich, “Problems of construction ecology (from materials presented at the First International Congress on Ecology and Geotechnics),” Osn., Fundam. Mekh. Gruntov, No. 6, 25–28 (1995).Google Scholar
  2. 2.
    Seminar “Problems of Geologic-Engineering and Ecologic-Engineering and Land and Service-Line Intentory in the Ural, Region,” Ékaterinburg (1995).Google Scholar
  3. 3.
    Problems and Methods of Investigating Artificial Physical Fields. The Engineering Geology and Hydrogeology of Moscow [in Russian], ILSAN, Moscow (1989).Google Scholar
  4. 4.
    “Interplay between geotechnical engineering and engineering geology,” in: Proceedings of the Eleventh European Conference on Soil Mechanics and Foundation Engineering, Copenhagen (1995).Google Scholar
  5. 5.
    A. G. Talalai, “Characteristic features of geoecological surveys of regions with industrial, urban, and agrarian landforms,” in: Problems of Geologic-Engineering and Ecologic-Engineering Surveys and Land and Service-Line Inventory in the Ural Region [in Russian], Ekaterinburg (1995), pp. 63–66.Google Scholar
  6. 6.
    R. V. Ulitin, “Ecologic-engineering diagnostics of natural-industrial systems by geoelectrical methods,” Problems of Geologic-Engineering and Ecologic-Engineering Surveys and Land and Service-Line Inventory in the Ural Region [in Russian], Ekaterinburg (1995), pp. 19–21.Google Scholar
  7. 7.
    V. I. Kulachkin, V. A. Ilyichev, A. I. Radkevich, V. I. Sheinin, and L. R. Stavnitser, “Ground testings of radon as a source of ecological danger,” in: Proceedings of the First International Congress on Environmental Geotechnics, Edmonton, Canada (1994), pp. 879–881.Google Scholar
  8. 8.
    V. A. Il'ichev, B. I. Kulachkin, A. I. Radkevich, L. R. Stavnitser, and V. I. Sheinin, “Ecological problems of radon in construction,” Osn., Fundam. Mekh. Gruntov, No. 5, 26–28 (1994).Google Scholar
  9. 9.
    A. D. Zhigalin, Problems and Methods of Investigating Artificial Physical Fields. The Engineering Geology and Hydrogeology of Moscow [in Russian], ILSAN, Moscow (1989).Google Scholar
  10. 10.
    B. I. Kulachkin, A. I. Radkevitch, M. A. Trotsky, P. A. Schepetinov, I. P. Shlykov, and I. G. Shakhgeldyan, “Survey on site of Port Salif in Yemen,” in: Proceedings of the International Symposium on Cone Penetration Testing, Linkoping, Sweden (1995), pp. 596–601.Google Scholar
  11. 11.
    V. Fritsch, Problem Geopathogenes Erscheinungen vom Standpunkt der Geophysik, J. E. Lehmans, Munchen (1955).Google Scholar
  12. 12.
    K. Bachler, Der Gute Platz Eine Neue Hilfe. Erfahrungen Einer Rutengangerin, Veritas Verlag, Hinz-Passau (1981).Google Scholar
  13. 13.
    E. K. Mel'nikov, V. A. Rudnik, Yu. I. Musiichuk, and V. I. Rymarev, “Pathogenic effect of active fractures of the earth's crust in the Saint Petersburg region,” Geoékol., No. 4, 50–70 (1994).Google Scholar
  14. 14.
    C. D. Shackelford, “Report of Technical Committee on Environmental Control (TC5),” in: Proceedings of the First International Congress on Environmental Geotechnics, Edmonton, Canada (1994), pp. 981–1007.Google Scholar
  15. 15.
    N. P. Betelev, B. I. Kulachkin, and Ya. M. Kislyakov, “Dependence between uranium and organic matter in soils, rocks, and in uranium deposits in connection with geotechnical problems,” in: Proceedings of the First International Congress on Environmental Geotechnics, Edmonton, Canada (1994), pp. 137–141.Google Scholar
  16. 16.
    V. E. Sokolovich, “Dioxins in soils,” Osn., Fundam. Mekh. Gruntov, No. 2, 27–29 (1994).Google Scholar
  17. 17.
    N. R. Morgenstern, “The observational method in environmental geotechnics,” in: Proceedings of the First International Congress on Environmental Geotechnics, Edmonton, Canada (1994), pp. 963–977.Google Scholar
  18. 18.
    E. W. Brand, J. B. Massey, and P. G. D. Whiteside, “Environmental aspects of sands dredging and mud disposal in Hong Kong,” in: Proceedings of the First International Congress on Environmental Geotechnics, Edmonton, Canada (1994), pp. 1–11.Google Scholar
  19. 19.
    M. A. Viergever, F. A. Westrate, and M. Loxham, “Reclamation of dredged materials in Europe,” in: Proceedings of the First International Congress on Environmental Geotechnics, Edmonton, Canada (1994), pp. 11–21.Google Scholar
  20. 20.
    V. P. Rollings, “Geotechnical considerations in dredged material management,” in: Proceedings of the First International Congress on Environmental Geotechnics, Edmonton, Canada (1994), pp. 21–33Google Scholar
  21. 21.
    M. Manassero and C. D. Shackelford, “Classification of industrial wastes for reuse and land filling,” in: Proceedings of the First International Congress on Environmental Geotechnics, Edmonton, Canada(1994), pp. 103–115.Google Scholar
  22. 22.
    R. G. Clark, J. A. Scarrow, and R. W. Skinner, “Safety considerations specific to investigation of landfills and contaminated land,” in: Proceedings of the First International Congress on Environmental Geotechnics, Edmonton, Canada (1994), pp. 167–173.Google Scholar
  23. 23.
    J. K. Mitchel, “Physical barriers for waste containment,” in: Proceedings of the First International Congress on Environmental Geotechnics, Edmonton, Canada (1994), pp. 951–963.Google Scholar
  24. 24.
    J. A. Cherry, “In-situ control of contaminated ground water” in: Proceedings of the First International Congress on Environmental Geotechnics, Edmonton, Canada (1994), pp. 77–79.Google Scholar
  25. 25.
    B. Boldt-Leppin, P. Kozicki, M. D. Haug, and J. Kozicki, “Use of organophilic clay to control seepage from underground gasoline storage tanks,” in: Proceedings of the First International Congress on Environmental Geotechnics, Edmonton, Canada (1994), pp. 141–147.Google Scholar
  26. 26.
    A. Esnault and F. Dufornet-Borgeois, “Ecrans etanches destines au confinement de sites pollues: Durabilite des materiaux constitutifs,” in: Proceedings of the First International Congress on Environmental Geotechnics, Edmonton, Canada (1994), pp. 215–221.Google Scholar
  27. 27.
    M. C. O'Riordan, M. J. Duggan, W. B. Rose, et al., “The radiological implications of using by-product gypsum as a building material,” NRPB-R7 (1972).Google Scholar
  28. 28.
    A. D. Wrixon and M. C. O'Riordan, “Radiological criteria for the use of phosphogypsum as a building material,” in: Proceedings of the International Symposium on Phosphogypsum, Buena Vista (1980).Google Scholar
  29. 29.
    Radiation. Dosages, Effects, and Risk [Russian translation], Mir, Moscow (1983).Google Scholar
  30. 30.
    L. Brunarski and M. Kravchik, “Natural radioactivity of construction materials,” Beton Zhelezobeton, No. 7 44–46 (1990).Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • B. I. Kulachkin
  • V. A. Il'ichev
  • Yu. G. Trofimenkov
  • A. I. Radkevich

There are no affiliations available

Personalised recommendations