Skip to main content
Log in

Estimation of sieving coefficients of convective absorption of drugs in perfused rat jejunum

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

Intestinal absorption of many hydrophilic drugs cannot be explained solely in terms of pH-partition and solvent-drag effects have been described in a number of cases. However, quantitative estimates of sieving coefficient (Φ) for drug molecules have tended to be variable. In the present work anin situ perfused intestinal loop preparation in the rat has been used to measure the disappearance of five hydrophilic drugs from the intestinal lumen and a mathematical model of drug absorption in the presence of net and unidirectional fluid fluxes has been developed. The model allows separate estimation of the convective (solvent drag) and nonconvective (partition) components of drug absorption from the experimental data. The five drugs studied were found to have Φ values ranging from 0.1–0.9; this was highly dependent on molecular size. Analysis of the data shows that three of the drugs are absorbed almost exclusively by the convective process (caffeine, cimetidine, hydrochlorthiazide) while the other two are absorbed by both convective and nonconvective processes (salicylate, oxprenolol). We conclude that the methodology is a useful and reliable means of deriving separate estimates of these two components of drug absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. A. Shore, B. B. Brodie, and C. A. M. Hogben. The gastric secretion of drugs: a pH-partition hypothesis.J. Pharmacol. Exp. Ther. 119:361–369 (1957).

    CAS  PubMed  Google Scholar 

  2. L. S. Schanker, D. J. Tocco, B. B. Brodie, and C. A. M. Hogben. Absorption of drugs from the rat small intestine.J. Pharmacol. Exp. Ther. 123:81–88 (1958).

    CAS  PubMed  Google Scholar 

  3. N. Lifson and A. A. Hakim. Simple diffusive-convective model for intestinal absorption of a non-electrolyte (urea).Am. J. Physiol. 211:1137–1146 (1966).

    CAS  PubMed  Google Scholar 

  4. G. Barnett, S. Hui, and L. Z. Benet. Effects of theophylline on salicylate transport in isolated rat jejunum.Biochem. Biophys. Acta 507:517–523 (1978).

    Article  CAS  Google Scholar 

  5. H. Ochsenfahrt and D. Winne. The contribution of solvent drag to the intestinal absorption of tritiated water and urea from the jejunum of rat.Naunyn-Schmiedebergs Arch. Pharmacol. 279:133–152 (1973).

    Article  CAS  PubMed  Google Scholar 

  6. W. Ochsenfahrt and D. Winne. The contribution of solvent drag to the intestinal absorption of the basic drugs amidopyrine and antipyrine from the jejunum of rat.Naunyn-Schmiedebergs Arch. Pharmacol. 281:175–196 (1974).

    Article  CAS  PubMed  Google Scholar 

  7. H. Ochsenfahrt and D. Winne. The contribution of solvent drag to the intestinal absorption of the acidic drugs benzoic acid and salicylic acid from the jejunum of rat.Naunyn-Schmiedebergs Arch. Pharmacol. 281:197–217 (1974).

    Article  CAS  PubMed  Google Scholar 

  8. A. Karino, M. Hayashi, T. Horie, S. Awazu, H. Minami, and M. Hanano. Solvent drag effect in drug intestinal absorption. I Studies on drug and D2O absorption clearances.J. Pharmacobiodyn. 5:410–417 (1982).

    Article  CAS  PubMed  Google Scholar 

  9. A. Karino, M. Hayashi, S. Awazu, and M. Hanano. Solvent drag effect in drug intestinal absorption. II Studies on drug absorption clearance and water influx.J. Pharmacobiodyn. 5:670–677 (1982).

    Article  CAS  PubMed  Google Scholar 

  10. Y. Miyamoto, H. Yuasa, T. Iga, and M. Hanano. Determination of the membrane permeability and the reflection coefficient by the two-dimensional laminar flow model for intestinal perfusion experiments.Biochim. Biophys. Acta 854:191–197 (1986).

    Article  CAS  PubMed  Google Scholar 

  11. K. Diem and C. Leutner (eds.).Documenta Geigy Scientific Tables VIIth Edition, Ciba Geigy, Basle, Switzerland, 1970, pp. 280–282.

    Google Scholar 

  12. O. Kedem and A. Katchalsky. Thermodynamic analysis of the permeability of biological membranes to non-electrolytes.Biochim. Biophys. Acta 27:229–246 (1958).

    Article  CAS  PubMed  Google Scholar 

  13. O. Kedem and A. Katchalsky. A physiological interpretation of the phenomenological coefficients of membrane permeability.J. Gen. Physiol. 45:143–179 (1961).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. K. H. Ryu and E. Grim. Unstirred water layers in canine jejunum.Am. J. Physiol. 242:G364-G369 (1982).

    CAS  PubMed  Google Scholar 

  15. S. G. Shultz. Intestinal absorption of Na and Cl. In M. Field, J. S. Fordtran, and S. G. Shultz (eds.),Secretory Diarrhea, American Physiological Society, Bethesda, MD., 1989, pp. 1–9.

    Google Scholar 

  16. H. Yuasa, Y. Miyamoto, T. Iga, and M. Hanano. Intestinal Absorption by carriermediated transports: Two-dimensional laminar flow model.J. Theoret. Biol. 119:25–36 (1986).

    Article  CAS  Google Scholar 

  17. D. W. Powell, L. I. Solberg, G. R. Plotkin, D. H. Catlin, R. M. Maeuza, and S. B. Formal. Experimental diarrhoea: III. Bicarbonate transport in rat salmonella enterocolitis.Gastroenterology 60:1076–1086 (1971).

    CAS  PubMed  Google Scholar 

  18. D. S. Parsons. The absorption of bicarbonate saline solutions by the small intestine and colon of the white rat.Quart. J. Exp. Physiol. 41:410–420 (1956).

    Article  CAS  Google Scholar 

  19. J. T. Dolusio, N. F. Billups, L. W. Ditternt, E. T. Sugita, and J. V. Swintosky. Drug absorption I: Anin situ rat gut technique yielding realistic absorption rates.J. Pharm. Sci. 58:1196–1202 (1969).

    Article  Google Scholar 

  20. R. A. Frizzell, M. Field, and S. G. Schultz. Sodium-coupled chloride transport by epithelial tissues.Am. J. Physiol. 5:F1-F8 (1979).

    Google Scholar 

  21. D.-A. Hallback, M. Jodal, A. Sjoqvist, and D. Lundgren. Evidence for cholera secretion emanating from the crypts.Gastroenterology 83:1051–1056 (1982).

    CAS  PubMed  Google Scholar 

  22. B. E. Cohen. The permeability of liposomes to non-electrolytes. I. Activation energies for permeation.J. Membrane Biol. 20:235–268 (1975).

    Article  CAS  Google Scholar 

  23. H. J. Worman and M. Field. Osmotic water permeability of small intestinal brushborder membranes.J. Membrane Biol. 87:233–239 (1985).

    Article  CAS  Google Scholar 

  24. E. M. Renkin and F. E. Curry. In G. Giebisch, D. C. Tosteson, and H. M. Ussing (eds.),Membrane Transport in Biology, Vol 4A, Springer, Berlin, 1979, pp. 1–46.

    Google Scholar 

  25. D. E. Leahy. Intrinsic molecular volume as a measure of the cavity term in linear solvation energy relationships: Octanol-water partition coefficients and aqueous solubilities.J. Pharm. Sci. 75:629–636 (1986).

    Article  CAS  PubMed  Google Scholar 

  26. SAS, Statistical Analysis System, SAS Institute Inc., Box 8000 Carey, NC 27511, 1974.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leahy, D.E., Lynch, J., Finney, R.E. et al. Estimation of sieving coefficients of convective absorption of drugs in perfused rat jejunum. Journal of Pharmacokinetics and Biopharmaceutics 22, 411–429 (1994). https://doi.org/10.1007/BF02353863

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02353863

Key Words

Navigation